Raman Laser Could Identify Explosives at a Distance

Image: Brett Hokr

A new technique that causes a diffuse material such as a powder to emit laser light could distinguish a harmless substance from an explosive or allow aerial mapping of fertilizer, say the scientists who developed it.

The method is based on Raman spectroscopy. When light strikes a molecule, roughly one in 10 million photons hitting it will drop to a lower frequency that’s determined by just what molecule it is. By seeing how the wavelength of the scattered light changes, an observer can identify what substance she’s seeing. Unfortunately, 1 in 10 million is a fairly weak signal, so some sort of amplification is needed.

To boost the signal, researchers at Texas A&M and the Air Force Research Laboratory turned to a phenomenon known as random lasing. Traditional lasers work by bouncing photons back and forth in a laser cavity, in which a material such as a crystal or a gas sits between two mirrors. The photons excite electrons to produce more photons, amplifying their numbers until a beam of light emerges. But lasing can also happen without mirrors in a material like a powder, if the light bounces among the particles long enough for amplification to occur. Shining an intense laser beam into a substance that’s sufficiently dense to trap the light for a time increases the number of Raman conversions, producing a strong signal with a chemical signature.

“Ordinary soil is quite able to give you this type of physical condition,” says Marlan Scully, professor of applied physics at Texas A&M. He and Vladislav Yakovlev, professor of biomedical engineering, describe their work in the latest issue of Proceedings of the National Academies of Science.

Their team shone green laser light on samples and got back Raman spectra that identified various chemicals, such as ammonium and potassium nitrate. They were able to detect the chemicals at a distance of 1 kilometer.

“There’s no reason we couldn’t go 10 km away,” Scully says. Such distance would allow security personnel to safely check whether a substance was explosive without getting too close, or let a plane fly over farmland to see if the soil contained enough fertilizer. Further refinements might even allow the technique to work from orbit, for agricultural mapping.

“This is the first application of random lasing,” says Scully. “We think we’re onto something.”

Advertisement

Tech Talk

IEEE Spectrum’s general technology blog, featuring news, analysis, and opinions about engineering, consumer electronics, and technology and society, from the editorial staff and freelance contributors.

Newsletter Sign Up

Sign up for the Tech Alert newsletter and receive ground-breaking technology and science news from IEEE Spectrum every Thursday.

Advertisement