Mars Comet Shames Earth Dithering

Humans should have been on Mars to see Comet Siding Spring

3 min read
Mars, a comet, and several satellites, and their path.
Illustration: JPL-Caltech/NASA

Comet siding Spring will make a spectacular fly-past of the planet Mars on 20 October. Among the observers will be seven robotic space probes sent from Earth.

Only discovered less than two years ago, the newborn comet, fresh from the Oort Cloud nursery far beyond Pluto, probably carries secrets of the origins of the solar system. Its arrival was so sudden and unexpected that no Earthborn probe could have been built and launched in time to intercept it. Instead, by the most freakish of improbabilities, it fell directly into range of a space fleet that had assembled for an entirely different reason.

On Sunday the comet is to flash through the Mars-and-moonlets system, travelling south-to-north nearly perpendicular to their orbital plane. It’ll miss Phobos and Deimos by 112,000 kilometers, and skate by Mars by about the same. When its potentially dangerous dust trail follows, four of the five orbiting probes will be snuggling safely behind the planet's bulk. The two surface rovers will be protected by the Martian atmosphere. The aged Opportunity will look for the comet in pre-dawn twilight, and the more-recently-arrived Curiosity, on the opposite side of the planet, will be in evening twilight.

Besides carrying cosmic secrets, the comet is also carrying a question. Why aren’t there people out there front-row-center for what might have been the greatest solar system spectacle of all human history? Where are the human eyeballs and human souls that should have been rising from the Martian surface at this marvel. The sight would likely have been a literally astronomical reward for the boldness and ingenuity that had placed humans there?

Fifty years ago, during the hey-day of the Apollo Program development, the issue of human flight to Mars wasn’t even open to doubt or debate – the only issue was the time frame. Could it be done within 20 years of a moon landing, as optimists hoped? Or would it take 30, or 40, as the realists expected?

True, these visions rested on the wispy foundations of imaginary engineering breakthroughs and in blissful ignorance of the real challenges of long-term space operations and human physiology. The maturity of the independently-developed technologies that when harnessed together in the 1960s enabled— barely enabled—brief lunar surface sorties by astronauts also misled futurists into thinking a new crop of advanced engineering capabilities could easily be mustered.

In hindsight, sophisticated reliability assessments, which properly assessed Apollo mission success at 80 percent and crew survival at 95 percent, when applied to even the best humans-to-Mars strategies, gave the likelihood of success at  less than5 percent and of crew survival as less than 50 percent. We didn’t even know how much we didn’t know.

But was that really an excuse for not even seriously trying? It’s not as if we couldn’t have afforded it. Did not trying to get humans to Mars really saved the world’s governments any serious money?

So instead of on-site living eyewitnesses to this spectacle, we’ve sent R2D2, and been lucky at that. The robots will perform just fine, and it will still be an amazing event. Yet it can also serve as a slap-in-the-face reminder that just as on Earth, “fortune favors the bold”. It would have vastly increased human culture if bold humans now on Mars— and the bold societies that might have existed to send them— would be justifiably exulting in this unexpected reward from the inanimate Universe, seen first-hand instead of through robot eyes.

There are more glorious surprises in the infinite “Out There”, waiting to be stumbled across and recognized. Let’s not be caught flat-footed like this again.

The opinions expressed are those of the author, not IEEE Spectrum, the IEEE, or its organizational units.

The Conversation (0)