Nanotech's Outsized Energy Impact

I think Richard Smalley would have appreciated recent developments in lithium batteries. The Rice University chemist shared the 1996 Nobel Prize in Chemistry for the discovery of soccer ball-shaped carbon cages called buckyballs - the primary charge-generating component in the organic solar cells we covered extensively this spring. Smalley believed that nanotechnology could multiply the efficiency of the myriad energy devices upon which modern human society relies and, as such, had a central role to play in cleaning up our energy systems.

I relied on Smalley's vision to wrap up a 2004 feature story on organic photovoltaics for Tech Review - "Solar-Cell Rollout". Smalley's belief in the rather anemic, flimsy plastic cells' potential to someday be rooftop-ready lent the technology crucial authority. (Doesn't seem so crazy now. Just yesterday a German R&D agency decided the technology's performance warranted a â'¬2.5-million investment in improving its stability.)

In the same breath I passed along Smalley's plea for bold investments in physical sciences research:

Nanotech could help solve the energy problem, Smalley contends, by providing new tools and materials that make widespread use of solar cells economically viable. But he believes it will take billions of dollars in funding and the focused efforts of the world's top chemists and physicists to make that happen. So for the past two years, he has been crisscrossing the United States, evangelizing for nothing short of a modern-day Manhattan Project to use nanotech to deliver a sustainable energy system.

Smalley died from leukemia in 2005, but the vision he championed continues to spread and the advances he foresaw are being realized. My article "Realizing Lithium Battery Potential" which headlines MIT TechReview.com today presents nanotech-fueled advances that could multiply the energy storage capacity of lithium batteries. The immense potential of lithium batteries is the inspiration for today's renaissance in electric vehicle development. But auto industry analysts say their cost will constrain EV expansion through 2020; see for example these uninspiring growth curves from PriceWaterhouseCoopers' Calum MacRae. More potent batteries should help by extending EVs' range and thus improving their value proposition.

Nanotech, by the way, is already improving the lithium battery. Boston-area technology developer A123, profiled by Spectrum last September, coats its batteries' positive electrodes with nanoparticles of iron-phosphate to boost safety and reduce cost relative to conventional laptop-style batteries. A123 is believed to have lost its bid to supply GM's Chevy Volt plug-in hybrid vehicle, but if current trends it will have plenty of other EVs to bid on.

Advertisement

Newsletter Sign Up

Sign up for the EnergyWise newsletter and get biweekly news on the power & energy industry, green technology, and conservation delivered directly to your inbox.

Advertisement