Tech Talk iconTech Talk

The Long and Short of Carbon Nanotubesâ¿¿ Similarity to Asbestos

A recently published paper in Nature Nanotechnology submitted by researchers at Edinburgh University led by Ken Donaldson has provided evidence that some carbon nanotubesâ''specifically multi-walled carbon nanotubes (MWNT) that are longer than 20 µmâ''have the same pathogenic effects as asbestos.

Like asbestos, the MWNTâ''s toxicity is not due to their chemical composition but their physical characteristics, namely their length.

The pathogenic quality of both MWNTs of a certain length and asbestos occurs when the bodyâ''s phagocytes attempt to engulf the fiber, and when unable to get around the entire length of the fiber, the phagocytes try to kill the fiber with toxic products. The attempt fails to kill the fiber but succeeds in damaging the surrounding tissue.

If you donâ''t have a subscription to Nature, I suggest reading Richard Jones blog entry at Soft Machines, which gives a pretty thorough review of the findings and what it all means.

As Jones notes, â''not all carbon nanotubes are equal when it comes to their toxicity. Long nanotubes produce an asbestos-like response, while short nanotubes, and particulate graphene-like materials donâ''t produce this response.â''

Jones further emphasizes, â''the experiments do not say anything about issues of dose and exposure.â''

While Jones did not initially know what percentage of the carbon nanotubes on the market fit the description of those that were used in the tests, the International Council on Nanotechnology (ICON) provided a backgrounder that provides some information in this area.

The MWNTs that might fit this description, Jones notes, are integrated into a material matrix, which leaves the threats of exposure in two areas: workers who are working with the MWNTs before they are integrated into a material matrix and what happens in the life cycle of the products, especially after disposal.

Phoenix Landing on Mars Makes History

This time it all went perfectly. After a voyage of 422 million miles lasting 10 months, NASA's Phoenix Mars Lander came to a rest on a spot on the Martian Arctic yesterday at 7:38 pm EDST. The long-awaited journey's end had its handlers shouting in triumph, savoring the success of one of the most complicated interplanetary missions in history. The last time the U.S. space agency attempted to send a big exploration platform to an ice cap on the Red Planet, with the 1999 flight of the Mars Polar Lander, it ended in failure during the critical landing sequence, which astronautic engineers call the "seven minutes of terror" (see video below).

Those seven minutes, this time, rolled by with every item on the technical checklist kicking in nearly as programmed by scientists many months ago. A minor glitch caused the Phoenix's parachute to open seven seconds later than scheduled, sending the research craft several miles downrange of its target on a stretch of northern plains dubbed Green Valley by mission planners. Nonetheless, yesterday's operation resulted in a historic milestone in space exploration, the first successful mission to a Martian polar region, where subsurface ice is believed to exist.

Due to the great distance its radio signals had to travel, confirmation of touchdown did not reach Earth, at NASA's Goldstone Space Communications Station in California's Mojave Desert, for about 15 minutes, where the result was instantly relayed to the Jet Propulsion Laboratory, in Pasadena, Calif. The JPL team, in charge of the flight portion of the mission, immediately broke out in boisterous applause at the confirmation (see video below): "Touchdown signal detected."

Led by JPL Project Manager Barry Goldstein, the flight team shouted, "It's down, baby, it's down!"

The Phoenix's perilous descent saw it decelerating from some 12 000 miles per hour at the edge of the Martian atmosphere to about 5 mph as it approached the surface using eight pulsed retro-rockets to gently coast it to a landing. The US $420 million spacecraft then released its remaining helium fuel and, after waiting for dust to settle, began deploying its twin solar-power arrays.

"It was better than we could have imagined. Everything just worked like a charm," said Goldstein. "The hardest part is over," he added.

Photo: NASA

FLOATING TO MARS: A spectacular image captured by the Mars Reconnaissance Orbiter's HiRISE camera showed the Phoenix with its parachute deployed high above the polar plains.

About two hours after touchdown, according to an update from NASA last night, the Phoenix's cameras began to transmit the first images of the northern polar landing zone, including this colorized photo of the ground around the settled vehicle.

"We see the lack of rocks that we expected, we see the polygons that we saw from space, we don't see ice on the surface, but we think we will see it beneath the surface," said Peter Smith of the University of Arizona at Tucson, principal investigator for the Phoenix mission. "It looks great to me."

"Seeing these images after a successful landing reaffirmed the thorough work over the past five years by a great team," Goldstein commented yesterday (the 47th anniversary of Pres. John Kennedy's call to to send a man to the moon).

Now, the real work of interplanetary science begins for Phoenix: scooping the Martian "permafrost" soil for evidence of frozen water.

We'll continue to keep you posted on the progress of Phoenix. In the meantime, for more on the mission's background and implications, please review this account, "Martian Cliffhanger Resolved at Last", at MSNBC by our Spectrum Online contributor (and mentor) Jim Oberg.

It's the stuff history is made of.

Out of Africa: Ultralow power PCs

Africa's electricity shortages are getting the attention of some very clever desktop computer designers in San Francisco -- at an innnovative technology and development organization called Inveneo.

I first encountered Inveneo's marvelous low-power PC in a dusty, poor village in Rwanda, the country made infamous by the 1994 ethnic genocide and then famous by the Hollywood blockbuster film, "Hotel Rwanda.". Late one afternoon, I visited an Internet cafe -- a small shop where people pay about a dollar an hour to send emails and search the Web. Instead of a normal bulky, power-hungry computer, I found a small, simple and energy-efficient one.

Indeed, the electricity footprint of this PC was unbelievable small: a mere six to eight watts, many times less than a normal computer.

The power requirement is so low that a simple solar device, costing less than $500, can drive this computer for eight hours -- day after day.

More than a year passed before I met the talented people who devised this computer. The other day, I went to the offices of Inveneo, whose staff hang out in a scruffy building in the trendy but still-funky "South of Market" neighborhood. There I met Robert Marsh, Inveneo's engineering guru, and the group's charismatic chairwoman, Kristin Peterson.

In the 1970s, Marsh was a founding member of the legendary Homebrew Computing Club, a font of creativity for what became the PC industry in Silicon Valley. Marsh designed the Inveneo PC using off-the-shelf parts. they are cheaper of course. He chose an ultra-low-power AMD chip-set and a low-power flat-panel monitor. "I tested a ton of them," Marsh recalls, "until I got it right."

Inveneo sells the PC for $469. First released about a year ago, the computer is usually purchased by foreign donors, supporting one of the dozens of African partners that Inveneo works with to expand technology expertise in the region. To date, about one thousand of these PCs are being used in Africa.

"The benefits are various," says Peterson, who travels often to the region. "These computers work in areas where electricity is undependable, or maybe there is no electricity."

Even in African cities, "there is heat, dust and humidity," she adds. "These are punishing environments for computers."

By going against the grain of the computer industry -- where ample electricity is taken for granted -- Marsh was able to conceive of a novelty -- that makes perfect sense in the sub-Saharan.

Today, Inveneo's PCs are assembled in the U.S., so the obvious next challenge is to bring assembly closer to Africans. That will require more training and resources in the places using these computers. And that reminds Peterson of a central insight that animates her work in human development: "Technology alone isn't enough."

[For more about Inveneo, watch this clip from CNN]

Japan Experiences a Flight from Science

According to a recent article in The New York Times, Japan is running out of engineers and scientists.

After decades of eminence in the fields that made it a world leader in technology, Japan now finds itself worrying over its future, as its young people flock to professions in other areas. Japanese educators have even given the trend a name: rikei banare (or "flight from science").

By one estimate from the nation's ministry of internal affairs, there is a shortfall of almost half a million engineers available to Japan's industrial infrastructure.

Much like American youngsters, Japanese students increasingly are choosing career paths in more lucrative or glamorous sectors such as finance or the arts. The drop-off in those studying math, science, and engineering has become so severe, the Times reports, that Japanese industrial firms have begun advertising campaigns designed to make these pursuits "look sexy and cool."

More pragmatically perhaps, Japanese business planners have initiated programs to invite young engineers and scientists to their shores to fill in the looming gaps--as well as to send high-tech assignments overseas to where the talent pool is potentially deeper, such as India and Malaysia.

So far, these efforts have failed to turn the tide in terms of meeting the country's enormous future needs for brain power, according to the Times.

"Japan is sitting on a demographic time bomb," Kazuhiro Asakawa, a professor of business at Keio University, told the U.S. newspaper. "An explosion is going to take place. They see it coming, but no one is doing enough about it."

If it sounds like a familiar refrain to many in Western industrial nations, it's because Japan is hardly alone. The more prosperous a nation becomes, the more it tends to squander the very source of its own prosperity.

Swiss Snowfall the Lowest Ever Recorded

Because snowpack in the worldâ''s major mountain chainsâ''the Himalayas, Rockies, Alps and Andesâ''are so immensely important to river flows and water supplies across huge regions, hardly anything is more important than their fate in a warming world. Switzerlandâ''s Neue Zuercher Zeiting, one of the globeâ''s top business newspapers, reports today, May 22, that during the last two decades, there have been fewer snowy days in the Alps than any time since measurements began.

The news report is based on findings by Christoph Marty of the Swiss Federal Institute for Snow and Avalanche Research. He found that at lower elevations (200-800 meters), the number of snow days has declined 50 percent in the last twenty years. At middle elevations, there are three weeksâ'' fewer snow days, a drop of 40 percent.

According to NZZ, Martyâ''s findings appeared in the AGUâ''s Geophysical Research Letters on Wednesday. Watch the site; so far a search turns up no 2008 publications for Marty, and the most recent issue posted was from April.

Italy Opts for New Nuclear Construction Program

Franceâ''s Le Figaro reports today, May 22, that the Italian government has opted to build a new group of nuclear power plants. Following Chernobyl, Italians voted in a national referendum to close their existing reactors, and so if the country follows through on the governmentâ''s new commitment, it will be not merely a matter of adding reactors but of initiating an all-new nuclear program.

Italy is highly dependent on natural gas, which it obtains in large quantities from Russia and states in the Russian sphere of influence. Its development minister said it had no choice now but to re-embrace the atom, given nuclearâ''s economic and environmental advantages.

Global Governance for Nanotechâ¿¿Perhaps. But What Kind of Nanotech?

I was drawn to the headline for a recent opinion piece over at Nanotech-Now that reads: â''Nanotechnology and the Potential for Global Governanceâ''. This was intriguing to me based on my most recent musings on the current way we are addressing toxicological issues surrounding nanoparticles.

While I see a current vacuum in leadership and global governance on the toxicology and safety of nanoparticles, this article concerns itself with global governance for mechanosynthesis and desktop factories. According to the author, Mike Treder for the Center for Responsible Nanotechnology, we need to start thinking about how the world is going to regulate this technology because it could be so significant even though it doesnâ''t exist yet.

The article was enlightening for me because I hadnâ''t realized that â''the formerly active debate over the feasibility of mechanosynthesis and exponential general-purpose molecular manufacturing seems to be largely over.â''

I suppose that "feasible" is broad enough a term that it may be true that debate is largely over. But there still remain some important science issues to be addressed before mechanosynthesis is capable of being realized, which I think is more or less what "feasible" is supposed to mean.

What is odd about the article is that it uses testimony by David Rejeski, director of the Project on Emerging Nanotechnologies, before a Senate subcommittee to support the contention that we need global governance of mechanosynthesis now, even though Rejeski was arguing that we need to be proactive in addressing toxicology issues of nanoparticles or face a potential backlash against the technology.

I imagine that Rejeski provided his testimony because environmental, health and safety concerns over nanoparticles are here today. I am not sure that he had desktop factories on his mind when he made his comments.

I donâ''t want to postpone the setting up of a global governance body to oversee desktop factories too long because it could become a reality in 20 years or so. But maybe we can see how it goes with safety regulations for nanoparticles firstâ'¿since theyâ''re already here.

Out of Africa: Alternative lighting

The World Bank keeps raising the curtain on an unusual campaign to stimulate alternative and non-traditional sources of â''off-gridâ'' electricity for Africans. The World Bankâ''s â''Lighting Africaâ'' initiative held its first business development conference last week, in Accra Ghana. The conference is the latest move by the initiative to link private businesses with African partners in the area of â''off-gridâ'' electricity â'' solar, small hydro, wind, geothermal and other self-contained systems.

The campaign is a big departure for the World Bank, which for decades has loaned money â'' or helped back loans â'' to national governments who built large generating capacity for national grid networks. These networks, by their nature, are large, centralized and relatively expensive. Even worse, in most African countries these networks have failed to reach large parts of the population.

Off-grid networks are potentially a boon for rural Africans, most of whom live so far from national electric grids that they have no hope of receiving a connection, ever. By building and managing their own small grids â'' to create enough power for villages or even single schools or hospitals â'' rural Africans can get a more secure supply of electricity â'' and less expensively and more under their own control. The barrier is both financial, managerial and technical. Rural Africans and small communities often lack the money and expertise to run these systems (though many are simple enough to be easily maintained by locals.

Trying to mediate between rural Africans and their small community institutions, on the one, and the international market for alternative energy services, on the other, is new ground for the World Bank. Why far-flung alternative energy companies, interested in small projects in remote Africa, would do business with the World Bank is an open question. But the experiment is well conceived, responds to a huge need and has great potential as a learning experience, if nothing else. In short, this experiment is worth watching. If it succeeds â'' or it other institutions can do the same thing more effectively â'' the potential for rural Africa is staggering. No single technological input is more important in rural Africa than electricity; and because these communities are decentralized, the electricity solution can be too.

Worth noting also is the potential PR windfall for the World Bank. Usually to finance large-scale national grid systems, the bank must cozy up to authoritarian rulers in Africa. The â''Lighting Africaâ'' initiative helps burnish the World Bankâ''s â''greenâ'' image and also presents this large bureaucratic institution as looking out for Africaâ''s little guys. So even the PR value alone of the initiative is substantial.

Russian Nanotechnology Initiative Is Full of Intrigue

The mysterious death of Svetlana Zheludeva, deputy director for science at the Shubnikov Institute of Crystallography in Moscow, at the age of 59 has led some to speculate that she may have been poisoned.

Just five days after opening a letter addressed to Mikhail Kovalchuk, the director of the Kurchatov Institute, which contained a white powder, Zheludeva died of complete organ failure.

After tests were run on the mysterious white powder, poisoning has been ruled out. But it is all a bit strange. Just as a little background, according to the Moscow Times, Kovalchuk received $1 billion last year to develop nanotechnology and turn the Kurchatov Institute into a nanotechnology research hub.

Since its inception the government-backed initiative to develop nanotechnology in Russia has always been outside the norm.

Instead of setting up a government institution to serve as the mechanism to fund research projects in nanotechnology throughout the countryâ''think in terms of the USâ''s National Nanotechnology Initiativeâ''which has been more or less the standard for all other countriesâ'' approach to developing nanotechnology, Russia instead decided to set up a private company.

This approach was certainly innovative, and not necessarily a bad idea especially if youâ''re looking to create a platform for quick commercialization of the research.

But after announcements to allocate anywhere from $5 to $7 billion to nanotechnology research within the first 8 years of the program, the initiative has been fraught with strange little intrigues. For instance, the Economic Development and Trade Ministry objected to the proposal to start the program in 2007 and proposed launching it in 2008 and completing it five years later. As a result, according to published reports, the government announced an allocation of just $150 million for nanotechnology in the federal budget for 2007.

Then came bizarre announcements by Deputy Prime Minister Sergei Ivanov at a Federation Council session that Russian sales of nanotechnology products are expected to amount to $700 billion in 2008.

In a country that brought us both Tolstoy and Dostoyevsky, we should expect an entertaining yarn as Russia begins its push to be a leader in nanotechnology.

A Wiki Project on Safe Handling of Nanoparticles Proposed

A couple of weeks ago I blogged on the recent report from the International Council on Nanotechnology (ICON) that detailed the findings from two workshops it held in 2007.

I was dubious of the true international scope of the workshops and the resulting report, and was concerned over a seeming lack of cooperation between the major groups investigating environmental, health and safety (EHS) aspects of nanoparticles.

My post received a response from Kristen Kulinowski from Rice University, who was kind enough to direct me to the full list of participants, which can be found here (Check Sections 1-36 for Workshop 1 and 2-78 for Workshop 2).

According to Dr. Kulinowski, the full list of participants would reveal a far more international group of participants than is reflected in the Steering Committee. However, from my perspective the lists still remain largely US-centric. In the first workshop held in Bethesda, MD nearly 80% of the participants are from the US. In the second workshop held in Switzerland the ratio improves, but not as much as you might expect based on its location in Europe, with still nearly 50% of the participants coming from the US.

My other question with this work was where are the channels of cooperation between it and other international groups looking at establishing standards for EHS in nanotechnology, namely with Organization for Economic Co-operation and Development (OECD), the International Organization for Standardization (ISO), and the American Society for Testing and Materials International (ASTM International).

Dr. Kulinowski conceded that there was still too much fragmentation in efforts to find solutions regarding EHS concerns on nanotechnology. However, she seemed to offer as a possible solution a new initiative at ICON to create an international Wiki on occupational practices for safe handling of nanomaterials to address this problem.

It is an innovative approach and may help pool the breadth of knowledge and understanding we have regarding the subject. But it seems leadership is still the lacking component.

Nanotoxicological research lacks the necessary measurement tools to address the specific problems of nanoparticles, some standardization of testing and measurement needs to be established so that two seemingly identical experiments do not come up with polar opposite results, and, perhaps most importantly, there needs to be some mechanism that will bring new research into international governmentâ''s policies and regulations.

Again, I applaud the work of ICON to try and gather as much information as possible, albeit it from a slightly less international perspective than I would have thought.

But information is not enough. Hopefully we can arrive at some wisdom on the subject and that some international body can make that wisdom actionable.


Tech Talk

IEEE Spectrum’s general technology blog, featuring news, analysis, and opinions about engineering, consumer electronics, and technology and society, from the editorial staff and freelance contributors.

Newsletter Sign Up

Sign up for the Tech Alert newsletter and receive ground-breaking technology and science news from IEEE Spectrum every Thursday.


New York State Gets Behind Oxyfuel Carbon Capture

In a somewhat startling development, New Yorkâ''s governor David Paterson announced on June 10 that the state will support construction of an experimental â''oxyfiredâ'' electric generation plant, in which coal will be burned in an atmosphere of almost pure oxygen, so that nitrogen emissions are eliminated and carbon capture simplified. Swedenâ''s Vattenfall and Franceâ''s Alstom are completing a similar demonstration plant in eastern Germany, as described in the â''winners & losersâ'' January issue of Spectrum, and Babcock & Wilcox has had a serious oxyfuel R&D program in the United States. But oxyfuel has not been the mainstream approach …

Load More