Nanoclast iconNanoclast

DNA-based nanowires

Nanoscale Interconnects Come to Self-Assembling DNA Origami

DNA origami structures are essentially DNA strands that have been folded into structures using the techniques of the Japanese art of paper folding for which it is named. These DNA origami structures have been hotly pursued as a way to keep shrinking the feature sizes of chips. 

One could really get a sense of how seriously researchers were taking this approach for electronics when IBM researchers reported seven years ago that they were able to use such folded nanostructures to create a scaffold that served as a kind of quasi circuit board. That board allowed them to assemble components with features as small as 6 nanometers.

Despite this research interest, some aspects of the DNA origami technique have not been fully developed for electronics applications. One issues pressing the brakes has been interconnects: Nobody has produced well-defined electrical contacts between macroscopic electrodes and the DNA-based origami nanodevices.

Now researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Paderborn Universities in Germany have taken on this gap in research and have developed a technique that will make it possible to build interconnects on the nanoscale between electronic components.  The researchers believe that their technique represents an important first step on the way to building electronic circuits by self-assembly.

Read More
Basic setup that enables researchers to use lasers as optical “tweezers” to pick individual atoms out from a cloud and hold them in place

Large Number of Atoms Trapped In an Array Bolsters Quantum Computing

Digital logic depends on bits. The binary states of “0” or “1” form the basis of computing. In quantum computers, the bit is replaced by something called a quantum bit (or, qubit), which is an atomic particle that can be coerced into being both 0 and 1 simultaneously, at least for a time.

But one of the problems for quantum computing has been how to get restless atomic particles, like electrons, to sit down together in large groups long enough so that they can be used to carry out calculations.

Researchers at MIT and Harvard University have devised a way to capture atomic particles using optical “tweezers” and hold them in place long enough to take a picture of them so that their locations can be determined and lasers can be directed at them based on that information. Optical tweezers—more formally known as “single-beam gradient force traps”—have been a key instrument in manipulating matter in biology and quantum optic applications since Bell Labs first described that instrument in 1986.

Read More
A nanostructured transistor for a transparant glucose sensor.

Nanostructred Transistor Enables Glucose Sensing Contact Lens

Various nanomaterials have been enlisted for creating improved glucose sensors that help diabetics determine when their blood sugar levels are too high or low. There have also been various ways in which nanomaterials have been incorporated into contact lenses to enable a variety of new capabilities.

Now, a research team at Oregon State University (OSU) has brought together nano-enabled contact lenses and glucose sensors into a single device that may someday do double duty as a blood glucose monitor and a contro mechanism for deciding when to deliver insulin injections. The device, say the researchers, will be a transparent sensor embedded in a contact lens.

Read More
This topological insulator, doped with chromium (Cr) atoms, conducts electricity on its surface and possesses desirable magnetic properties at a higher range of temperatures t

Topological Insulators Move a Step Closer to Computing Uses

With this year’s Nobel Prize in Physics going to three physicists for their “theoretical discoveries of topological phase transitions and topological phases of matter,” it would appear that things are looking up for the nascent prospects of topological insulators.

Topological insulators (TIs) are materials that behave like conductors near their surfaces but act as insulators throughout the bulk of their interiors. While such materials had long been thought theoretically possible, only recently have research labs around the world begun producing materials with these properties. This has buoyed hopes that they could someday be used in technologies ranging from “spintronics” to quantum computers.

Now an international team of researchers from the National Institute of Standards and Technology (NIST), the University of California Los Angeles (UCLA), and the Beijing Institute of Technology in China have developed a way that makes it far easier to magnetize TIs, improving the odds that they’ll be applied to computing.

Read More
Cutting the material in battery form

Printable Electronics That Self Heal Before Your Eyes

While printed electronics conjure up notions of being able to manufacture electronic devices far more simply and cheaply than traditional electronics, the reality is that the resulting devices are so delicate that they are prone to an early demise that all but snuffs out any savings that might have been gained.

Now, researchers at the University of California San Diego (UCSD) have developed a new type of magnetic ink that produces electronic devices with self-healing capabilities. The UCSD researchers believe that this self-healing quality will make printed electronics far more robust, and therefore more viable for a number of new applications.

Read More

Gordon Moore's Foundation Funds First of 50 Fellows in $34 Million Plan

When our own Tekla Perry interviewed him in 2008, Gordon Moore wanted to be remembered for “Anything, but Moore’s Law.” Today, through his and his wife Betty’s foundation, he made some strides to be remembered for something else—supporting promising inventors.

The Gordon and Betty Moore Foundation announced the first five of what will eventually be 50 Moore Inventor Fellows. Each fellow will receive a total of US $825,000 over three years to drive their invention forward, including $50,000 per year from their institution. All told, the Moore Foundation plans to invest $34 million.

“We are investing in promising scientist-problem solvers with a passion for inventing—like Gordon Moore himself,” said Harvey V. Fineberg, president of the Gordon and Betty Moore Foundation, in a press release. “By providing support to these early-career researchers, we can give them the freedom to try out new ideas that could make a real and positive difference.”

The inaugural Moore Fellows include:

Deji Akinwande, a professor at the University of Texas, Austin, and an IEEE senior member, was recognized for his work on two-dimensional silicon, otherwise known as silicene. In 2015, his group created the first silicene transistor. But he’s also been involved in developing devices made from other 2D materials including graphene, black phosphorus, and molybdenum disulfide. (He’s also winner of the 2015 IEEE Nanotechnology Early Career Award.)

Shane Ardo is an assistant professor of chemistry at University of California, Irvine. According to the Foundation, his materials invention uses sunlight to drive a novel ion-pumping mechanism that could be used to boost the power output and efficiency of electrochemical technologies. His new materials will also enable sustainable, affordable and efficient polymer devices to desalinate water.

Xingjie Ni, an assistant professor of electrical engineering at Penn State, is an expert in optical metamaterials. According to the Moore Foundation, Xingjie’s invention is a brighter quantum light source that could ultimately increase the speed, scale, and security of information transmission in quantum communication and computing. But he is perhaps best known for the development in 2015 of an ultrathin invisibility cloak that works in visible light.

Joanna Slusky is an assistant professor of molecular biosciences and computational biology at the University of Kansas. Slusky’s invention is a protein that will re-sensitize bacteria to common antibiotics, thereby overcoming drug-resistant superbugs and re-establishing the efficacy of antibiotics.

Mona Jarrahi is an associate professor of electrical engineering at UCLA and leader of the university’s terahertz electronics lab. The Moore Foundation is backing Jarrahi for her terahertz imaging tool. The instrument should help researchers understand how fundamental biological molecules behave in their natural environment and answer other fundamental questions. Her lab recently reported creating a metamaterial lens that allows terahertz beams to be steered electronically. She’s a senior member of IEEE, and, like Akinwande, has received IEEE’s Early Career Award in Nanotechnology.

The fellows will be recognized at an event later today at The Tech Museum of Innovation in San Jose, Calif.

“We cannot know in advance that an invention we support will change the world, but giving passionate inventors the resources to develop a good idea can accelerate progress in the areas we care about,” Robert Kirshner, chief program officer for science at the Moore Foundation, said in a press release.

Graphite/PMMA/Li trilayer electrode

Nanostructure Makes Batteries Better on Very First Charge

Various nanomaterials have been drafted into the quest to improve the charge capacity of anodes (negative electrodes) in lithium-ion batteries. Their role primarily has been to help silicon—which offers ten times the charge capacity of graphite—last more than just a few charge/discharge cycles. Everything from graphene to nanofibers have been enlisted into help silicon better survive the rigors of the expansion and then contraction that occurs when silicon anodes are charged and discharged.

Now scientists at Columbia University have developed a nanostructure for the silicon anode of Li-ion batteries that will help them overcome one of their most challenging moments: the very first charge/discharge cycle that occurs during manufacturing.

Read More
Pink (boron) and blue (nitrogen) pillars serve as spacers for carbon graphene sheets (grey). The researchers showed the material worked best when doped with oxygen atoms (red), which enhanced its ability to adsorb and desorb hydrogen (white).

Graphene-Nanotube Combo Exceeds Benchmarks for Hydrogen Storage in Fuel Cells

With lithium-ion (Li-ion) batteries becoming the de-facto energy source for next-generation vehicles, some of us remember that there was a time when fuel cells were thought to be the most viable solution for powering vehicles after the internal combustion engine.

Of course, this is only a perception based on how companies like Tesla have made the Li-ion battery seem to be the best option. However, the US Department of Energy (DoE) has set benchmarks for what storage materials will need to deliver in order to compete for a place in post-fossil fuel vehicles.

Now researchers at Rice University have developed a nanomaterial for fuel cells that consists of layers of graphene separated by nanotube pillars of boron nitride. The material might tick all the boxes established by the DoE for next-generation vehicles.

Read More
Introducing lithium ions between layers of molybdenum sulfide can tune the thermal conductivity of the material.

New Way to Control Heat in 2D Materials

Two-dimensional (2D) materials such as those made from transition metal dichalcogenides (TMDs) are  layered one on top of another to create devices that could potentially be used for electronics. In fact, how these materials are layered determines to a large extent the electronic properties of the final device.

One property that engineers have kept in mind when plotting the layering of TMDs and other 2D materials is how they dissipate heat. Researchers at North Carolina State University, the University of Illinois at Urbana-Champaign (UI) and the Toyota Research Institute of North America (TRINA) have discovered an almost counterintuitive phenomenon in the layering of 2D materials that should help them to dissipate heat when they are fabricated into electronic devices.

Read More


IEEE Spectrum’s nanotechnology blog, featuring news and analysis about the development, applications, and future of science and technology at the nanoscale.

Dexter Johnson
Madrid, Spain
Rachel Courtland
New York City
Load More