Nanoclast iconNanoclast

Living Materials Respond to the Environment and Communicate With Each Other

Nearly four decades ago, researchers managed to coax the bacterium Escherichia coli (E. coli) into producing a protein. Now researchers at MIT have devised a way to combine a living E. coli cell with inanimate building blocks, like gold nanoparticles and quantum dots, to create a hybrid “living material.”

The MIT researchers have managed to get the bacterium to produce a biofilm that is able to attach to different nanoparticles, resulting in a hybrid living material that responds to its environment, produces complex biological molecules, and spans multiple length scales. The properties that these living materials take on include the ability to conduct electricity and emit light.

The research, which was published in the journal Nature Materials ("Synthesis and patterning of tunable multiscale materials with engineered cells"), is expected to serve as a demonstration of the new approach's potential to produce larger devices such as solar cells, self-healing materials, or diagnostic sensors.

“Our idea is to put the living and the nonliving worlds together to make hybrid materials that have living cells in them and are functional,” said Timothy Lu, an assistant professor of electrical engineering and biological engineering at MIT, in a press release. “It’s an interesting way of thinking about materials synthesis, which is very different from what people do now, which is usually a top-down approach.”

The researchers chose to use E. coli since it naturally produces a biofilm. This biofilm contains something dubbed “curli fibers,” which are amyloid proteins that help the bacteria attach to surfaces. The researchers modify the repeating protein chain of the curli fibers (called CsgA) by adding protein fragments called peptides. By modifying the curli fibers that attach to different substances, it’s possible to create a range of hybrid materials. They can create gold nanowires that behave like a conducting film or tiny crystals that exhibit quantum mechanical properties.

Perhaps the most significant property of these hybrid materials is that they can communicate with each other. “It’s a really simple system but what happens over time is you get curli that’s increasingly labeled by gold particles. It shows that indeed you can make cells that talk to each other and they can change the composition of the material over time,” Lu said in the release. “Ultimately, we hope to emulate how natural systems, like bone, form. No one tells bone what to do, but it generates a material in response to environmental signals,” said Lu.

Early application ideas for the hybrid materials include batteries and solar cells, but the researchers are also investigating the potential of coating the biofilms with enzymes to catalyze the breakdown of cellulose, which could be useful for converting agricultural waste to biofuel.

Rhenium Disulfide: A New 3-D Material That Has the Electronic Properties of a 2-D Material

Earlier this year, “borophene” elbowed its way into the increasingly crowded world of two-dimensional (2-D) materials.  With rough counts estimating that there are over 100 layered materials that could potentially be stripped down to a monolayer to form a 2-D material, we are likely to see more of these in the coming years.

Researchers at the U.S Department of Energy (DOE) Berkeley Lab have added a new twist to the quest for 2-D materials by creating a 3-D material that behaves like a 2-D monolayer.  The material is called rhenium disulfide (ReS2) and unlike 2-D materials, such as molybdenum disulfide (MoS2), it maintains its direct bandgap even in a 3-D version. The direct bandgap means that unlike silicon it can emit and absorb light easily, making materials that have this property attractive for optoelectronic applications.

“Typically the monolayers in a semiconducting transition metal dichalcogenides, such as molybdenum disulfide, are relatively strongly coupled, but isolated monolayers show large changes in electronic structure and lattice vibration energies,” said Sefaattin Tongay, lead author of the research, in a press release. “The result is that in bulk these materials are indirect gap semiconductors and in the monolayer they are direct gap.”

Read More

Carbon Nanotube Circuits Are Back in the Running as a Viable Material for Flexible Electronics

There was a time, not so long ago, when carbon nanotubes (CNTs) were the “wonder material” that everyone was talking about—of course, that was before graphene hit the scene.

But even before graphene, researchers had begun to doubt whether CNTs were actually well suited for electronics applications. There are two stubborn obstacles that stand in the way of applying carbon nanotubes to electronics: it’s tricky to get them to go where you want them and it's difficult to create CNTs that are homogeneous enough to ensure stable electrical responses.

In spite of these hurdles, one researcher, Zhenan Bao of Stanford University, has remained focused on applying CNTs to electronic applications. Bao addressed the homogeneity issue a few years back by developing a new sorting process for the CNTs that ensured conducting and semiconducting CNTs were separated.

Now Bao, along with Yi Cui an assistant professor at Stanford, has developed a process by which CNT circuits can tolerate power fluctuations in flexible electronic devices in much the same way that silicon circuitry manages the fluctuations.

Read More

Graphene Gives You Infrared Vision in a Contact Lens

It sounds like something from a spy thriller movie: putting on a contact lens that gives you infrared vision without the need for a bulky contraption that covers your face. But now, thanks to research at the University of Michigan, such a contact lens is a real possibility.

The Michigan researchers turned to the optical capabilities of graphene to create their infrared contact lens. IBM last year demonstrated some of the photoconductivity mechanisms of graphene that make it an attractive infrared detector.

Graphene is capable of detecting the entire infrared spectrum, with visible and ultraviolet light thrown in. But where graphene giveth, it also taketh away. Because graphene is only one-atom thick, it can absorb only 2.3 percent of the light that hits it. This is not enough to generate an electrical signal, and without a signal it can’t operate as a infrared sensor.

"The challenge for the current generation of graphene-based detectors is that their sensitivity is typically very poor," said Zhaohui Zhong, assistant professor at the University of Michigan, in a press release. "It's a hundred to a thousand times lower than what a commercial device would require."

In research that was published in the journal Nature Nanotechnology ("Graphene photodetectors with ultra-broadband and high responsivity at room temperature"), the Michigan researchers devised a new method for generating the electrical signal. Instead of trying to measure the electrons that are released when the light strikes the material, they amplified an electrical current that is near the electrical signals generated by the incoming light.

To achieve this amplification, the researchers started by sandwiching an insulator between two sheets of graphene. The bottom sheet has an electrical current running through it. When light hits the top sheet, electrons are freed and positively charged electron holes are generated. The electrons are able to perform a quantum tunneling effect through the insulator layer, which would be impenetrable in classical physics.

The electron holes that are left behind in the top layer generate an electric field that impacts the way electricity flows through the bottom layer. By measuring this change in the flow of current in the bottom layer, the researchers could derive just how much light hit the top layer.

This device has very nearly the same sensitivity as cooled mid-infrared detectors, but achieves it at room temperature. The researchers have already been able to produce infrared sensors the size of a pinky nail, or a standard contact lens.

"If we integrate it with a contact lens or other wearable electronics, it expands your vision," Zhong said in the release. "It provides you another way of interacting with your environment."

Most of us are familiar with the military applications of infrared vision, which allows the soldiers to see in the dark. But the technology also has medical applications such as letting doctors monitor blood flow.

Whether the ability to see in the infrared is an attractive feature for the rest of us remains to be seen. But that may become a possibility since the fundamental mechanism underlying the technology could become a mechanism for other material and device platforms. Is infrared vision mode for Google Glass in the offing?

Nanoscale Metamaterial Optical Switches Operate at Terahertz Speeds

A team of researchers from Vanderbilt University, University of Alabama-Birmingham, and Los Alamos National Laboratory has developed an ultra-small and ultra-fast optical switch made from vanadium oxide (VO2). With the device's ability to switch at terahertz speeds, it is much faster than similar switches developed by electronic giants that operate at gigahertz speeds, the researchers say.

Read More

Graphene Origami Boxes Exceed Hydrogen Storage Targets

Researchers at the University of Maryland have demonstrated through computer modeling that graphene can be triggered by an electric field to fold itself into a nifty three-dimensional box that can serve as a container for hydrogen storage and then unfold itself.

The way in which the graphene folds up into a box has been dubbed hydrogenation-assisted graphene origami (HAGO) and involves cutting the graphene into a pattern and then functionalizing it by atomically attaching hydrogen to the carbon atoms of the graphene. The electric field that is used does not trigger the graphene to perform its origami but is used to unfold the structure and then repeat the trick.

“First, a suitably functionalized and patterned graphene can spontaneously fold into a 3-D nanostructure.... No external electric field is needed,” explained Teng Li, an associate professor of mechanical engineering at University of Maryland in an e-mail to Nanoclast. “Second, an electric field can cause the polarization of the graphene, effectively reducing the graphene inter-layer adhesion, which causes the folded nanostructure to unfold. Upon turning off the electric field, the graphene folds up into a box spontaneously again. Such a process can be repeated many times.”

In the research, which was published in the journal ACS Nano (“Hydrogenation-Assisted Graphene Origami and Its Application in Programmable Molecular Mass Uptake, Storage, and Release”), the graphene origami boxes demonstrated remarkable hydrogen storage capabilities. The researchers calculate that graphene origami boxes have a hydrogen storage capacity of 9.7 percent by weight, far exceeding targets set by the U.S. Department of Energy (DOE) —5.5 percent by 2017 and 7.5 percent by 2020.

It would seem that nanomaterials are exceeding DOE targets for fuel cells on a pretty regular basis now. However, nanomaterials have a somewhat checkered past with hydrogen storage. At one time, carbon nanotubes were touted as the next big thing in that field, with claims of greater than 50-percent storage capacity. But it is now generally accepted that the figure is really closer to 1-percent. The problem was that the structures of both carbon nanotubes and fullerenes did not remain stable.

This instability has not proven to be a problem with the HAGO boxes. “Much effort has been dedicated in this research to demonstrate the promising feasibility of the HAGO process, including its robustness to possible manufacturing defects and stability at room temperature,” wrote Li. “We will actively pursue collaborations with experimentalists to actually demonstrate.”

Tungsten Diselenide Is New 2-D Optoelectronic Wonder Material

Researchers at the University of WashingtonMassachusetts Institute of Technology (MIT), and Vienna University of Technology (TU) in Austria  have all shown interesting optoelectronics results with a new two-dimensional (2-D) material called tungsten diselenide (WSe2).

The main page of the journal Nature Nanotechnology this week looks almost as though some mistake had been made with three of the top four stories highlighting “2D crystals.” But it was no mistake and foretells of a near future in which new 2-D materials are developed that will show either improved or complementary properties to that of graphene, the granddad of 2-D materials.

Tungsten diselenide belongs to a larger group of transition metal dichalcogenides that also includes molybdenum disulfide (MoS2). This family consists of materials that combine one of 15 transition metals with one of three members of the chalcogen family: sulfur, selenium, or tellurium. With only a few of these transition metals having been experimented upon, it’s likely we should see more coming down the pike.

Read More

Light on Boron Nitride Creates Tunable Ripples

Researchers at the University of California San Diego (UCSD) have discovered that light can cause a ripple effect on the two-dimensional (2-D) material, hexagonal boron nitride, that can be maintained long enough for the waves to be usable for practical applications. This discovery could lead to the transmission of information in computer chips, better management of heat flow in nanoscale devices, or the creation higher resolution images than is possible with light, the researchers say.

The waves in this rippling effect that the researchers observed are called phonon polaritons. Polaritons are the quasiparticles produced when any type of photon strikes an object. Specifically, phonon polaritons occur when an infrared photon strikes a material.

The UCSD researchers discovered that phonon polaritons are far smaller than light waves and can be tuned to particular frequencies and amplitudes by varying the number of layers of the boron nitride. This is the feature that makes it conceivable to use them for producing images with a higher resolution than is possible with light, say the scientists.

The research, which was published in the journal Science (“Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride”), involved focusing a laser on to the tip of an atomic force microscope as it scanned across the boron nitride. The AFM was taking measurements as infrared light from the laser struck the material.  An interference patterns were created as the phonon polariton waves traveled to the edge of the material and then reflected back.

"A wave on the surface of water is the closest analogy," said Dimitri Basov, professor of physics at the University of California, San Diego, who led the project, in a press release. "You throw a stone and you launch concentric waves that move outward. This is similar. Atoms are moving. The triggering event is illumination with light."

Basov added: "You can bounce these waves off edges. You can bounce them off defects. You can play all sorts of cool tricks with them. And of course, you can design the wavelength and amplitude of these oscillations in a way that suits your purpose."

The discovery was somewhat of a surprise. It stemmed from continuing research Basov and his colleagues have been conducting with 2-D materials, such as 2012 work in which they were experimenting with focusing infrared light on the surface of graphene to control the ripples of electrons that this caused across the surface of the material.

In this case, they were working with the insulator hexagonal boron nitride, which when combined with the conductor graphene, could make complex circuits.

In their similar work with graphene, the researchers were able to generate these phonon polaritons as well, but the waves would dissipate quickly. When using the boron nitride, the waves could be maintained for a long period of time.

"Because these materials are insulators, there is no electronic dissipation. So these waves travel further," Basov said. "We didn't expect them to be long-lived, but we are pleased that they are. It's becoming kind of practical."

Optical Tweezers Can Now Manipulate Matter on a Nanoscale

Optical tweezers—more formally known as “single-beam gradient force traps"—have been a key instrument in manipulating matter in biology and quantum optic applications since Bell Labs described an instrument in 1986. The problem for the tool’s use in nanoscale applications is that it couldn’t really manipulate particles smaller than a few hundred nanometers.

Now researchers at the ICFO-The Institute of Photonic Sciences near Barcelona, Spain have taken optical tweezers to a new level by employing plasmonics to make it possible for the instrument to manipulate objects in three dimensions .

Plasmonics takes advantage of the surface plasmons that are generated when photons hit a metal structure. The surface plasmons are essentially oscillations in the density of electron fields. Plasmonics has a number of applications ranging from the transmitting of data on computer chips to producing high-resolution lithography.

In this application, the plasmonics confine light to a very small dimension that accentuate the capabilities of nano tweezers, which involves focusing a laser light into a small spot. This focused laser light serves as an attractive force to small particles that become “trapped” in the beam of light. The plasmonic structure further confines the light from the laser.

In the IFCO work, which was published in the journal Nature Nanotechnology (“Three-dimensional manipulation with scanning near-field optical nanotweezers“), the researchers were able to attach a plasmonic device that took the shape of bowtie aperture to the extremity of an optical fiber.

The result of this addition has allowed the researchers to manipulate particles in three dimensions as small as a few tens of nanometers using a low, non-invasive laser intensity. The researchers were able to move a nanoparticle over tens of micrometres over a period of several minutes.

While this new tool will no doubt excite the imagination of molecular manufacturing adherents, who are looking to build macroscale products from nanoscale objects piece by piece, its initial applications are more likely to be in medical research to better understand the biological mechanisms that lead to disease.

Graphene Flakes Bring Higher Efficiencies to Polymer Solar Cells

The hunt by researchers for applications of graphene in photovoltaics has been, for the most part, limited to serving as a replacement to indium tin oxide (ITO), which is used as the transparent electrodes in organic solar cells. That started to change last year when researchers started to look at the potential of graphene in the conversion and conduction layers of solar cells.

Now researchers at the University of Cincinnati are experimenting with adding a small amount of graphene flakes to polymer-blend bulk-heterojunction (BHJ) solar cells and are finding that it improves the conversion efficiency of the cells significantly. The semiconducting part of a BHJ solar cells is made from two different materials—an electron donor and an acceptor. Light forms excitons at their interface, which separate into holes and the electrons producing a voltage. In the work performed by the Cincinnati researchers, they have discovered that they can increase the ratio of electron donors to electron acceptors to boost the energy absorbed by the cell.

“Because graphene is pure carbon, its charge conductivity is very high,” said Fei Yu, a University of Cincinnati doctoral student, in a press release. “We want to maximize the energy being absorbed by the solar cell, so we are increasing the ratio of the donor to acceptor and we’re using a very low fraction of graphene to achieve that.”

In research, which was presented 3 March at the American Physical Society Meeting in Denver (“Graphene-Based Polymer Bulk Heterojunction Solar Cells”), Yu reported a three-fold increase in energy conversion efficiency over typical polymer-blend BHJ solar cells.

“The increased performance, although well below the highest efficiency achieved in organic photovoltaic devices, is nevertheless significant in indicating that pristine graphene can be used as a charge transporter,” said Yu in the release.

The next step for the Cincinnati researchers will be to characterize the physics of the device, its film morphology and how to control and optimize the distribution of the graphene flakes to achieve better performance.

At present, no conversion efficiencies have been provided in the release or the abstract of the research. To give it some context, one of the highest reported conversion efficiencies for a polymer solar cell was as high as 10.6 percent for cells with more than one p-n junction. And those with a single junction have reached nearly 9 percent, with the expectation that they could exceed 10 percent in commercial products.

Improved conversion efficiency is just one of the issues that needs to be addressed in polymer solar cells. Reducing the cost of the materials that make up the modules (namely the ITO) is another for which graphene is being heavily researched. The next thing is to make the polymer solar cells survive in outdoor environments. With graphene’s nearly mythical strength,  maybe it could help out there too.

Advertisement

Nanoclast

IEEE Spectrum’s nanotechnology blog, featuring news and analysis about the development, applications, and future of science and technology at the nanoscale.

 
Editor
Dexter Johnson
Madrid, Spain
 
Contributor
Rachel Courtland
Associate Editor, IEEE Spectrum
New York, NY
Advertisement
Load More