Energywise iconEnergywise

Setting the Record Straight on FutureGen and IGCC

Gregg Easterbrook is a well-regarded environmental writer and a long-term contributor to the ultra-prestigious Atlantic Monthly. But I hope he never is the one to decide whether I get my next job or publication, because I'm about to correct two mistakes he makes in today’s New York Times. In “The Dirty War Against Clean Coal,” Easterbrook takes the Energy Department to task for resuscitating FutureGen, its futuristic clean-coal project. “This is part of a Washington tradition,” says Easterbrook, ”beginning pie-in-the-sky projects that create an excuse to avoid forms of conservation and greenhouse-gas reduction that are possible immediately. Companies including General Electric have alrady perfected technology to reduce emissions substantially, called 'integrated gasification combined cycle' [IGCC] power."

In other words, instead of going for an unproved new technology, the Department of Energy should stick with IGCC. But there's a problem here. FutureGen IS an IGCC plant and always has been so visualized. (In addition to gasifying coal, it would separate and capture all carbon and permanently store it away.)

There’s another problem. “The first commercial gasification power plant, designed by General Electric for Duke Energy, is being build in Indiana,” Easterbrook continues. Actually, two IGCC plants have been operating for many years: Tampa Electric’s Polk plant near Tampa, and Duke Energy’s Wabash River plant near Terre Haute, Indiana. (We're not bragging, because it's not exactly breaking news, but both ieee tv and IEEE Spectrum visited the Polk plant two summers ago, and descriptions can be found both at IEEE TV and in Spectrum magazine.) Per watthour of electricity produced, the Polk plant's is easily the most expensive in the whole country.

As long as the record is being set straight, Easterbrook’s straw-man conclusion also is very misleading. Green power, that is to say wind and solar, “simply cannot grow fast enough to eliminate the need for coal,” he says. But nobody is talking about eliminating our need for coal. What we can do is sharply reduce our reliance on coal, and to accomplish that, we can turn not only to wind but also to nuclear and gas-generated electricity. Per watt, nuclear eliminates for all practical purposes 100 percent of greenhouse gas emissions; natural gas cuts them about 50 perent.

 

 

 

 

Setting the Record Straight on Solar and Wind Futures

A recent blog post reported on an NREL study that asked what would happen to U.S. electricity generation if the country actually reduces its greenhouse gas emissions system 80 percent by 2050: the answer was little impact on electricity prices, lots more wind, a significant about of concentrating solar system, but very little photovoltaics. Though I would prefer for the study and its author to speak for themselves, readers have raised a number of issues that deserve at least preliminary clarification.

(1) Two readers expressed disbelief that even with a carbon price of $80-100, electricity prices would rise by only a cent or two. One of them called this conclusion "laughable." Well, that is what the study found. Relying on reasonable assumptions about energy resources and costs, based largely on the Energy Department's Annual Energy Outlook (2009) and expert consensus about how prices will evolve over decades, the study found that electricity prices will go up only a cent and a half.

(2) Reacting to skepticism about NREL’s optimistic wind forecast, a reader opined that the study assumed "amortization of an installed base of wind power, economies of scale, and some learning curve." As I understand it, that's about right, and it goes not just for wind but for all the major generation sources surveyed.

The exception is for photovoltaics, where NREL injected estimates for building-integrated PV from a Union of Concerned Scientists report. NREL considered the whole future of central PV generation too uncertain to include at all.

So, what's called "Distributed PV" in the various NREL tables includes only building-integrated PV and no photovoltaic powerplant generation. That certainly flies in the face of general opinion that central PV will achieve "grid parity"—that is, it will be able to compete economically with other basic fuels in selling electricity into the grid--well before 2050. (The current expert consensus is that grid parity may be achievable in exceptionally favorable regions like southern Europe and the American Southwest by about 2015.)

(3) A reader complained that a DOE report projecting 20 percent wind by 2030 only supports a "foregone conclusion." Given the experience of countries like Germany and Denmark with wind, and the huge U.S. wind resource, that skepticism does not seem justified to me. The NREL report's pessimistic conclusion about PV, however, is indeed open to the criticism that it only confirms a built-in assumption. Solar PV is predicted to experience lesser growth than wind because NREL decided that prospects for central PV generation are so uncertain at present, nothing reasonable can be said about them. (But if that's so, why include PV in the report's model at all?)

(4) A reader complains that the costs of substituting renewable energy for existing generation are underestimates because "fixed costs have to be recovered over a reduced amount of production." Actually, many large coal and nuclear plants are fully paid for, so new renewable generation will be competing only against their operating costs, which can be quite low. (This is why Entergy and Exelon have been able to make a very profitable business out of buying up and refurbishing nuclear power plants.)

(5) The same reader's complaint about net metering is I believe better justified. Requiring utilities to buy electricity from customers at retail rates does indeed impost costs on all other customers. This is one reason why British regulatory authorities, for example, have been very hostile to net metering.

 

 

 

 

 

Experts See Big Future for Wind, More Distant Outlook for Solar

In a penetrating and provocative talk on the opening day of  an IEEE photovoltaics specialists conference, on June 8, the U.S. Department of Energy’s Samuel F. Baldwin drew attention to a recent report assessing what it will take in terms of generation to meet the country’s stated carbon reduction goals. Walter Short and Patrick Sullivan of the National Renewable Energy Laboratory modeled the U.S. electricity system to identify the main effects of cutting U.S. carbon emissions 80 percent by 2050, as the Obama administration has promised. The results are arresting. Average electricity prices increase only modestly, to 10.5 cents per kilowatt-hour from 9 cents/kWh. Carbon prices, however, range from $80 to $100, five or six times present-day trading levels.

The NREL linear programming exercise found that with carbon emissions just one-fifth of what they are now in 2050, renewables account for almost half of U.S. electricity, but most of that is wind—solar concentrators contribute a significant share, but the role of photovoltaics is still minor. As for traditional fuels, the amount of electricity generated by coal contracts sharply, by about a third, and natural gas's generation decreases appreciably; nuclear holds about steady but does not increase.

The NREL report tends to reinforce what has been an Energywise refrain--that when we talk about renewables, it's really just one renewable, namely wind. Photovoltaic electricity is further from "grid parity" than its proponents would like us to think, and even when a kind of theoretical parity is achieved, a truly big break into the market may still be years away. Pretty much the same message is found in a major report issued this week by the National Academies, “Electricity from Renewable Resources: Status, Prospects, and Impediments.”

The Academies report endorsed the view of an earlier Department of Energy study that wind could generate 20 percent of U.S. electricity by 2020, provided--it emphasizes--that transmission and distribution bottlenecks are adequately addressed. If renewables are to contribute another 20 percent of generation in the next two decades to 2040, concludes the report, wind will continue to be the main player. Solar concentrators will play a growing role, but not necessarily PV. 

 

 

 

 

Stimulus and Climate Bills Will Have Positive Impact on Jobs

Reports issued today assess the probable effects on employment of the U.S. economic stimulus bill adopted earlier this year and the climate bill that the House is expected to vote on soon. One, "The Economic Benefits of Investing in Clean Energy,” was done in partnership with the Center for American Progress; the other, "Green Prosperity," with the Natural Resources Defense Council and Green for All. University of Massachusetts economist Robert Pollin was principal investigator in both reports.

The basic findings of the two reports are that investment in clean energy will add a net 1.7 million jobs to the U.S. economy, that there will be large opportunities for low-income and less-educated people to get onto career ladders with training and better pay, and that the cost of living will be reduced for such people. The number of new jobs generated by the two bills (mainly as a result of private investment)  will be three times what we would get from the same investment in traditional fossil energy, said Bracken Hendricks of the Center for American Progress, in a press briefing today. Instead of investment funds going largely to support fossil development projects overseas, they would go to support job creation in the United States itself.

Regarding methodology, Pollin said in a press briefing today that his team relied heavily on Commerce Department industrial surveys and detailed Bureau of Labor Statistics labor market surveys, as well as government data on housing and transportation costs. For reasons explained in the reports, their estimates of job creation did not include manufacturers of energy-efficient appliances or the auto industry, said Pollin. The reports heavily emphasize energy-improving retrofits in buildings though, Pollin conceded, racially discrimination in construction hiring will remain a problem that needs to be addressed.

 

At Last, Something New Under the Nuclear Sun

Last week, power plant manufacturer Babcock & Wilcox announced its intention to develop and market a small nuclear reactor, the mPower, which is to be available in 125 MW modules—a tenth the size of the nuclear power plants typically built these days. For decades it’s been a truism in electric power that nuclear energy will never live up to its potential unless somebody offers a reactor that is small enough to be suitable for local and Third World electricity markets. But it's been like the weather. Everybody talks about it but nobody does anything about it. So, even though there's still a yawning gap between intention and execution, it's hard not to exclaim: At last!

A comprehensive and definitive account of the B&W initiative is hard to provide at this stage of the game, because the company’s web pages have been inaccessible since the project was unveiled at the National Press Club in Washington on June 10, and because the company’s relevant executives also have been unavailable for further comment. But materials issued by B&W’s parent company McDermott International, Inc., state that the new reactor will have the following extremely attractive features, besides being small:

• the reactor’s core and containment will be located underground

• spent fuel from the reactor will likewise be storable underground for the reactor’s 60-year lifetime

• refueling will be required only every five years, compared to 18-24 months in most present-day reactors

• the whole reactor system will be rail-shippable from manufacturing locations in North America

A new business unit, B&W Modular Nuclear Energy, LLC, to be headed by Christofer Mowry, is being established in Lynchburg, Virginia, in the expectation that production will be done there and at B&W facilities in Ohio, Indiana, and Canada. The Tennessee Valley Authority has signed a letter of intent saying it will explore inaugural sites for the first plant, and TVA is part of a regional utility consortium that is envisioning a whole fleet of mPower reactors. 

In nuclear energy, nothing ever happens as fast as one would hope, and that's why nuclear is no panacea when it comes to dealing with climate change. McDermott CEO Brandon Bethards said last week that the first mPower reactor will enter service only in 2018, at the earliest. A lot can go wrong in the meantime. But as high-minded statements of intent go, this one seems rather detailed and credible. 

 

 

 

 

 

 

 

Four Selected for First New U.S. Nuclear Reactor Projects

Wall Street Journal ace energy reporter Rebecca Smith discloses on today’s front page, June 17, that DOE is getting set to issue $18.5 billion in loan guarantees to four companies that will own and operate the first new nuclear power plants to be started afresh since Three Mile Island. Strikingly absent from the list are the two companies that have operated plants most profitably and effectively in the last decade, Exelon and Entergy. Instead, the Department of Energy opted for two traditional vertically integrated utilities, Southern Company and Scana Corp.,  and two "merchant" companies that specialize in selling electricity into competitive markets, NRG Energy and UniStar Nuclear Energy, a joint venture of Constellation and Electricité de France.

In choosing among 17 companies that had filed applications for 21 reactor projects, eyeing a total of $122 billion in Federal loan guarantees, the government “sought companies with strong development teams and plans that could be implemented quickly," reports Smith. Scana and Southern will use a pre-approved design developed by Toshiba subsidiary Westinghouse, while NRG will go for the General Electric pre-approved design. UniStar will use more or less the blueprint for the plant that France’s Areva is currently building in Finland.

The Energy Department is shooting to have construction of the first plants started by 2011 and plants operating by 2015 or 2016, says Smith. "The first round of building would add about seven new reactors to the U.S.'s existing fleet of 104 at a likely cost of more than $40 billion. But the new plants cost so much -- estimates range from $5 billion to $12 billion -- that power companies could have trouble coming up with the equity they must put into the projects, typically 20% to 50% of the total. In addition, technical or regulatory problems could arise, and it isn't certain the plants can be run profitably."

NOTE: as long as you're reading today's Wall Street Journal, you might want to also check out the news story by Jake Sherman, who reports that several members of Congress who are highly influential in energy and climate policy own significant stakes in companies affected by such policy. You might wonder how it is that the president and Cabinet members have to put stocks into blind trusts when they assume office, whereas legislators evidently do not. Could it have something to do with the fact that lawmakers make the laws? 

 

 

Exxon and Palin Take (Green) Gas a Step Forward

Though details are spare, Exxon has announced it will participate in the Transcanada pipeline, which would carry Alaskan natural gas 1,700 miles from the North Slope through Yukon and British Columbia to Alberta, where the provincial network connects with the U.S. network. To be built at an estimated cost of $30 billion, the pipeline would be more than twice the length of the immensely controversial oil pipeline built in 1977. With a capacity of 6 billion cubic feet per day, it would supply the Lower 48 with the equivalent of ten percent of their current gas consumption.

The Transcanada pipeline proposal prevailed last year in a competition set up by Gov. Sarah Palin. Though the project could be delayed or even derailed by the unexpectedly sharp drop in recent natural gas prices and by larger than expected growth in domestic U.S. production, if it ultimately is built Palin may be able to boast--in a sweet irony--of having done more for the environment than Al Gore. For gas, as we never tire of reminding readers here, is a green fuel. Besides burning more cleanly than oil, it emits a half or even one-third as much carbon dioxide as coal, per unit energy generated. Natural gas also remains, on a kilowatt per investment dollar basis, the cheapest way of boosting electrical generating capacity.

If those 6 billion cubic meters of gas were used in their entirety to replace current coal generation, that would take a much bigger bite out of U.S. greenhouse gas emissions than solar energy could yield in an equivalent period, for much lower cost.

  

Relief Organizations Predict Wide Human Displacement from Climate Change

A report released Wednesday, June 10, draws frightening pictures of what global warming could mean for hundreds of millions of people who might find themselves with too little water, too much, or the wrong kind. As glaciers continue to melt in the Himalayas flood risks will increase down-river, while in the longer run decreased flows will threaten agricultural production in some of the world’s most densely populated regions. At the same time, "sea level rise will worsen saline intrusions, inundation, storm surges, erosion an other coastal hazards." Such developments already are visible around the world and could, by mid-century, displace people on a scope and scale that would "vastly exceed anything that has occurred before." 

That is the central conclusion of In Search of Shelter: Mapping the Effects of Climate Change on Human Migration, a collaborative study in which the relief organization Care International played a leading role. Two years ago, Christian Aid issued a report on the same subject in which it predicted that 1 billion people might be displaced by climate change by 2050.

The Care report was written with scholars from the United Nations University and Columbia University, and drew on field resources deployed for an ongoing European study of forced migration, EACH-FOR. Climate mapping was done by researchers at Columbia’s Center for International Earth Science Network.

"Climate change is happening with greater speed and intensity than initially predicted," says the report, explaining its rationale. "Therefore, the challenges and complex politics of adaptation are joining those of mitigation at the center of policy debates."

Detailing the kinds of conditions that are almost sure to get worse, the report notes that more than 300 million Africans already are suffering from water scarcity, with ares affected by water shortages "likely to increase by almost a third by 2050." An area of central Mexico singled out by the CIESIN map-makers could see water runoff decline by 25 to 50 percent. The most drastic changes are expected, however, in the highly populated areas of southern and eastern Asia that depend on runoff from the Himalayas to nourish agriculture.

The disappearance of glaciers in what's known as the Water Tower of Asia "implies decreased water supply and untimely flows--that is, [flows] coming in the wrong (non-cropping) season." Increasingly parched conditions in the Indus, Ganges, Mekong, Yangtze, and Yellow River valleys (among others) could drive inland-living people toward the coasts, where some could end up vulnerable to the effects of sea level rise instead. The Mekong Delta, for one, is home to 18 million people and produces half of Vietnam's rice, 60 percent of its shrimp harvest, and 80 percent of its fruit. Similar patterns are found in the Ganges delta, China's two major deltas, and, for that matter, the Nile’s.

The Care-Climate report shies away from making numerical predictions, though it cites estimates that the number of people displaced by climate change could go as high as 700 million by mid-century. It emphasizes that the effects of climate change are not easily disentangled from numerous other environmental and demographic factors. Its recommendations are not always compelling and sometimes are framed in language that seems irrelevantly "correct." But the report does make vividly clear that climate change is not just a matter of rich countries' taking action to reduce their emissions so as to cut risks to themselves. Global warming already is affecting millions of people living in straitened circumstances, and it will continue to do so, requiring concerted attention and action.

 

 

 

 

North Atlantic Conveyor Comes Back to Bite Again

During the past two decades—as concern about climate change, and especially abrupt climate change, has mounted—Exhibit A has been a compelling scenario that explains a sharp cold snap that occurred in the Northern Hemisphere during what's called the Younger Dryas period, about 12,000 years ago. In 1987 Wallace S. Broecker postulated that fresh waters from the southern rim of the North American ice sheet spontaneously spilled into the North Atlantic through what’s now the St. Lawrence River. Such a deluge would have shut down the salt-and-temperature driven currents that draw warm waters into the ocean there and keep Europe temperate.

The scenario has been repeatedly tested in the last decade, using the most sophisticated ocean-atmosphere climate models and the world’s most power supercomputers, to see whether melting of Artic and Greenland ice could produce a similar repeat catastrophe. Generally the results have been reassuring. Then, two and a half years ago, an international team found evidence that Broecker’s "big chill" was induced not by a spontaneous spilling of water from the St. Lawrence River but rather by the explosion of a large comet or asteroid over what's now Canada. Further geological evidence for such an explosion was found last year, as reported here.

But disaster scenarios involving the North Atlantic currents keep coming back to haunt us. Now a study published  in Geophysical Research Letters finds that if Greenland’s ice were to melt at moderate or high rates, the effect could be to shift sea currents and cause sea levels off the northeast coast of North America to rise by 50 to 50 centimeters more than the average sea level rise induced by global warning. The latest estimate by the Intergovernmental Panel on Climate Change, in 2007, found that the average global  sea level rise by the end of this century would be 18 to 59 cm.

Using the Community Climate System Model at the National Center for Atmospheric Research, in Boulder, the NCAR-led team assessed the probable effects of three ice melt scenarios: one in which Greenland’s ice melt rate continues to increase by 7 percent per year, and ones in which the rate slows to 3 or 1 percent. The 3 percent scenario yields a Northeast sea level rise of 54 cm above average, and the 1 percent scenario a rise of 20 cm above average. Counter-intuitively, the 7 percent scenario might lead to some recovery of Arctic sea ice by the end of the century, mitigating sea level rises.

Independently of its specific findings, the study draws attention to the fact that the effects of climate change are uneven in terms not only of global temperatures but sea levels as well. This is because, contrary to what one might suppose, sea levels are not the same around the world to begin with. Levels can vary by as much as a meter from one region to another, depending on factors like ocean circulation and compression of water at lower depths.

When Renewables Technology Implementation Lags Export Growth

Taiwan represents a textbook example of the special challenges that export economies face in meeting their carbon reduction targets.  Exports represent two thirds of The Republic of China's GDP and although the country's economy contracted by over 10 percent in the first quarter of 2009, all signs point to a resurgence of export led growth as China emerges from recession. That is good news for Taiwan's GDP trajectory and bad news for the country's carbon reduction policy goals--as coal-fired factories are fired up to produce the home appliances and electronics for the consumers of China's urban and emerging rural markets. In 2008, China replaced the United States as Taiwan's number one export market.

Taiwan has the dubious distinction of being home to two of the top five most polluting power plants on the planet. According to Carbon Monitoring for Action  two coal-fired power plants in Taichung and Mailiau are, respectively the number one and number five emitters of carbon in the world. The Taichung plant, owned by Taiwan Power Company, produces twenty percent of Taiwan's power. Coal-fired plants generate 36 percent of Taiwan's energy and the small island nation is the 22nd highest emitter of carbon dioxide among nations.

Unfortunately, Taiwan has been excluded from much of the formal global conversations on carbon restraint--it was not invited to be a signatory to the Kyoto Protocol--because its powerful neighbor to the north has successfully barred it from UN membership. Nonetheless, Taiwan's President Ma Ying-jeou maintains that the country is committed to reducing the carbon intensity of its manufacturing by 20 percent from 2005 levels by 2015, and by an additional 50 percent by 2025. Total carbon emissions are to be reduced to 2000 levels by 2025 and by half again by 2050.

Meeting these targets will be a challenge. Although the country has abundant wind, solar and geothermal resources, Taiwan's legislature has been accused of endless foot-dragging over a renewable energy bill that would jump start a faster pace of renewable development.  The legislature's intransigence has so exasperated one German wind power company (Infravest) that it has threatened to suspend investment in the country if the bill is not passed soon. Meanwhile, more coal-fired plants are in the works, as indicated by government approvals granted last year to Taiwan Power to expand a coal-fired power plant in Taipei County, and to build a new one in central Taiwan.

How quickly will policy makers in countries that are likely to pay the most carbon intensive price for the worldwide economic recovery  move to implement clean technologies to address those impacts?  Probably not quickly enough.  The next economic boom is likely to a bust for climate change mitigation.

Advertisement

Newsletter Sign Up

Sign up for the EnergyWise newsletter and get biweekly news on the power & energy industry, green technology, and conservation delivered directly to your inbox.

Advertisement
Load More