Energywise iconEnergywise

Floating Wind Turbines Could Expand Offshore Possibilities

So far, offshore wind development has stuck close to shore where the turbines could be anchored directly into the sea floor. This means that the 2,000-plus megawatts of ocean-based wind in Europe have all been installed in around 50 meters of water or less, and the long-awaited Cape Wind project in Nantucket Sound also will sit in shallow waters.

For the same reason that heading a bit offshore yields consistent and strong winds, though, heading even farther offshore often will improve those conditions even further. To take advantage of the wind blowing over deeper water, there is movement now to use floating wind turbines as a way of avoiding the need to anchor into a deep sea bed. According to one company, the biggest turbines currently available could feasibly work on such floating rigs.

Marine Innovation & Technology's WindFloat can theoretically support giant 5-MW turbines. The floating rig, made up essentially of three platforms with the turbine tower extending from one of them, is designed to withstand the rigors of a "100-year storm," according to a paper published in the Journal of Renewable and Sustainable Energy earlier this month (by company employees). And according to Principle Power, who has purchased the technology for WindFloat, several projects are in the works that could see turbines in the water by 2011 or 2012.

The floating wind idea could remove some of the issues that have plagued offshore wind's entry into the US market. Decade-long objections to Cape Wind generally came down to the visual disturbances residents of Cape Cod claimed the turbines would produce. The project, finally approved by the Department of the Interior in April, would eventually have 130 turbines at 3.6 MW each, collectively capable of producing about 75 percent of Cape Cod's electricity demand.

Those visual disturbances, though, wouldn't even come up at, say, a proposed project off the coast of Oregon: instead of the five miles from Cape Cod's shores that would produce a line of half-inch-tall turbines on the horizon, floating turbines based 10 miles away would be largely invisible.

According to the journal paper's authors, several design features do still need to be improved on the WindFloat to ensure smooth operation in the harshest of conditions. Other companies, though, are already steps ahead: Norwegian oil and gas giant Statoil recently completed construction of its first floating turbine several miles off the coast of Norway. Dubbed the Hywind, the company will spend the next two years testing the turbine before moving forward with further installations.

Image via Principle Power

MIT Weighs In on Natural Gas

An MIT study group has issued a report on the future of natural gas, reaffirming that gas will play a "a crucial role" in reducing U.S. carbon emissions in the next decades. Two months ago, the Worldwatch Institute noted that gas already is displacing dirty coal in the United States, and that U.S. greenhouse emissions have dropped sharply in recent years as a result. Substituting state-of-the-art gas generation for obsolete coal generation can reduce carbon emissions "by a factor of three," notes Ernest J. Moniz, head of the MIT unit that produced the gas report and the former top scientist in the Clinton Administration's energy department.

MIT notes that because the United States has a large amount of excess natural gas generating capacity, gas can immediately contribute much more to electricity supplies without new power plants having to be built--a point Robert F. Kennedy Jr also has been pressing in recent years. "The overbuilding of natural gas combined cycle plants starting in the mid-1990s presents a significant opportunity for near-term reductions in CO2 emissions from the power sector," says MIT. "The current fleet of natural gas combined cycle units has an average capacity factor of 41 percent, relative to a design-capacity factor of up to 85 percent."

In other words, the present-day fleet of U.S. gas-fired power plants could be generating twice as much electricity as they currently do. In Texas's ERCOT electricity system, MIT found, substituting gas for coal could reduce CO2 emissions 22 percent without adversely affecting reliability, while also cutting sulfur and nitrogen pollutants.

What makes that kind of scenario not merely conceivable but a likely prospect is the rapid development of U.S. "unconventional gas" by means of hydraulic fracking. MIT concurs with the new estimates finding that the United States has enough gas to last at current consumption rates for close to a hundred years. Globally, even without taking unconventional gas and innovations in extraction technology into account, the world has enough gas for 160 years, says MIT.

MIT finds that concerns about water are the one factor that could stand in the way of gas, echoing Spectrum's conclusions in a recent feature article. MIT recommends that full disclosure of fracking fluids be required, and that integrated water usage plans be prepared in regions where fracking is intense. The MIT report agrees with Kennedy that regulation should favor substitution of gas for coal. It agrees with the gas industry that where intermittent wind or solar generation is installed, there should also be additional investment in new gas generation, as a backup.

 

Ambitious Transmission Projects in Texas and U.S. Northeast

For decades there's been a notion that you can't get new transmission built in the United States because of the NIMBY syndrome, unfounded fears about powerline radiation, overlapping local, state and Federal authorities, and unresolved ambiguities as to how transmission investment will be rewarded in the new world of electricity restructuring and deregulation. So it came as something of a surprise, when we profiled the New England Independent System Operator, to learn that New England has successfully got a lot of new transmission built in recent years. PJM, which we characterized in an earlier profile has a smooth grid operator, also has done well.

This week, at a meeting of IEEE's PES section in New York City, members heard about how Powerbridge LLC connected up PJM and Long Island with a 500 kV, 100-km HVDC line that's been running pretty much at full capacity since coming into operation three years ago. As Jim Nash, Powerbridge's VP for engineering said, it's as if a new 660-MW low-cost generator had come into operation to provide power to Long Island's hard-pressed consumers. Now Powerbridge is looking to build a second 660-MW line that would connect Manhattan's main substation with New Jersey, in part by using an abandoned raid tunnel in the Palisades. In the second project as well as the first, Siemens would supply most of the crucial filtering and control equipment, while Prysmian would lay the cable.

Meanwhile, Toronto-based Transmission Developers Inc. is looking to build a 700-km, 2-GW cable under Lake Champlain that would connect wind and hydro generation in Quebec with customers on Long Island and the New York City area. Expected to cost nearly $4 billion if built, the project must pass numerous regulatory hurdles and deal with all manner of interests that could be adversely affected, including the lobstermen who ply the waters of Long Island Sound.

 Deep in the heart of Texas, a major transmission line intended to carry wind energy will likely received regulatory approval, having been rerouted in response to complaints from the big ranchers and landowners of the Heart of Texas Landowners' Coalition. It's just one of several transmission lines being built in Texas to connect relatively cheap wind generation with customers.

Some New Things Under the Sun

Recent mention was made here of Coulomb Technologies' EV charging system, soon to be rolled out in major metropolitan areas around the United States and featured in the current triennial design exhibit at the Cooper-Hewitt National Design Museum in New York City. Coulomb's cute electricity pump is not the only item of interest. Just as photogenic is the electric parasol featured with the headline to this story; almost as useful, potentially, are the solar-rechargeable lanterns (left), which were concocted by a group of Sri Lankan designers and engineers.

It's always good to be reminded that not every promising innovation is necessarily high-tech, electrical or electronic. One of the nicest items at Cooper-Hewitt is a more efficient and less polluting home cooking stove, meant to improve on the biomass-burning stoves that hundreds of millions of women use in India, China and other developing countries. The Chulha stove, developed by an Indian-Dutch collaboration under the aegis of Philips Philanthropy by Design, won two major design awards. It can be inspected in detail at the Philips design website.

"Improved fuel efficiency, a reduction in carbon monoxide and particle emissions, the exclusive use of simple materials like concrete, clay and terracotta, and even the packaging, which is made from recycled woven polypropylene, all contribute to making the stove stand out as an excellent example of eco design," boasts Philips Philanthropy by Design. The main aim with this innovative stove and others is to reduce the catastrophic rates of respiratory illness among the women who use them--an estimated 1.6 million of them die each year, according to Philips.

That's the most important reason but by no means the only reason to cut pollution and reduce carbon emissions from such stoves. Emissions from inefficient biomass stoves also are the major contributor to the Asian brown cloud and to the atmospheric greenhouse gases originating in human activity. V, Ramanathan, the eminent Scripps atmospheric scientist who discovered the brown cloud, has launched a project called Surya, in which the objective is to replace biogas cooking stoves with  solar and other gas-free cookers. An authoritative description of brown clouds and their effects can be found in Ramanathan's description of Surya.

According to that report, "about half of the world’s population, and 75 percent of households in India, use biofuels and biomass, including wood, charcoal, crop residues and dung, to prepare food and heat their homes. More than 70 percent of India’s population lives in rural areas. Cooking accounts for about 60 percent of the overall energy and 80 percent of the non-commercial energy used in rural India. More than 90 percent of the cooking is done with fire wood and bovine dung, i.e, cow-dung."

Australia Could be 100 Percent Renewable-Powered by 2020

Just as a report surfaced showing the way that Australia could be powered completely by wind and solar as early as 2020, the country's government reached a deal to maintain its renewable energy target at 20 percent by that year while adjusting more near-term targets upward.

The Australian non-profit group Beyond Zero Emissions published a Zero Carbon Australia report [PDF] with a roadmap toward total renewable energy penetration in an astonishing ten years. The plan calls for a 40 percent share of power generation to come from wind (Denmark, by comparison, has a plan to generate 50 percent of its power from wind by 2025), with the balance coming from enormous amounts of concentrating solar thermal installations. To manage variability in renewable power, they incorporate the use of molten salt thermal storage.

This plan even comes with a projected increase in energy usage, up 40 percent from 228 terawatt-hours/year today to 325 TWh/year in 2020. It also, though, comes with a pricetag: $37 billion (Australian dollars, or about $32.3 billion US) per year. The report authors don't find that so unreasonable:

"The required investment of $37 billion/year is the equivalent of 3% of GDP. The extra money spent versus Business-As-Usual to 2020 is the equivalent of $3.40 per person per day, the cost of a cup of coffee."

And after laying out the specific methods, including types of power, grid infrastructure and job creation and requirements, the authors conclude that the idea's technical feasibility now needs only one thing:

"What is required to make this happen is leadership from policymakers and society, with firm decisions made quickly that will allow this transition to occur."

And what are the policymakers up to? Well, 100 percent probably isn't on the table right now, but at least they're talking about 20 percent. This, of course, is more of a renewable energy portfolio standard than the United States currently has (although upwards of 30 states have their own now). But reports like that from Beyond Zero Emissions are cropping up often these days, over and over casting doubt on the arguments that renewables can't supply large proportions of electricity with existing technology. Maybe one of these days someone will listen.

Image via Beyond Zero Emissions

Gas Fracking Documentary Finds Nationwide Problems

Yesterday evening, June 21, HBO aired a two-hour documentary about natural gas fracking, which was made by a resident of Northeast Pennsylvania where unconventional gas production is just taking off. Filmmaker Josh Fox, having been offered about $100,000 for mineral rights under a property his family had owned for several generations, got suspicious and decided to look into the whole subject of hydraulic gas fracturing. What he found, after touring Wyoming, Colorado, Texas, and Louisiana, was a pattern of companies' riding roughshod over local concerns about air and water and--in some cases--almost certainly doing serious damage to human health and safety.

Though the film, Gasland, won this year's Sundance award for best documentary, its production values are nothing to boast about. A review in yesterday's New York Times complained, for example, about Fox's making a big show in the fashion of Michael Moore of trying and failing to obtain interviews with corporate players

That, however, is more a matter of style than substance. Reporting a feature article about gas fracking for IEEE Spectrum magazine, I also found that the oil and gas companies generally refused to talk to the press. Though there was one notable exception, most brazenly said that any coverage was likely to be negative, and that they therefore saw no percentage in talking with media people. One company even refused to respond to a series of damaging allegations made about its activities in the Dimock, Pennsylvania area.

In thirty years reporting for science and technology magazine, I had never run into this kind of attitude among high-tech companies.

Based on interviews with people in gas-affected areas and with experts who have sought to investigate the chemicals found in injection and flowback water, Fox makes a convincing case that some of them are much more dangerous than the industry would have the public believe. One such expert, Theo Colborn, talks of "insidious" neurological effects.

Despite Gasland's shortcomings, were you living in an area where companies are starting to frack, I'm in no doubt that the film would leave you feeling worried--irrespective of your politics or expertise.

 

 

 

 

 

Siemens Enters U.S. Market with Super-efficient Turbine

You don't have to be nearly as old as I to remember when it was considered very good for a thermal power plant to achieve an efficiency of 40 percent. The average efficiency of the existing U.S. fossil-fired plants is barely 30 percent, according to Siemens, and even gas-fired plants in combined cycle configurations typically achieve only 40 percent. So it's worth noting, for the record, that Siemens now has a gas-fired turbine that has set a world record of 60 percent, and that it's made its first sale of that turbine in the United States to a Florida utility, NextEra.

The turbine has just been demonstrated in a two-year trial run at an E.On plant in Irsching, Germany (above). The U.S. plant will have somewhat reduced physical dimensions and a slightly smaller output, reflecting the higher frequency of the U.S. grid. The first Florida turbine is expected to start operation in 2013.

The dramatically higher efficiencies of gas-fired plants, their correspondingly lower greenhouse gas emissions, and their relative cleanliness explain why natural gas is accounting for a fast-growing share of U.S. power production. Separately from the Florida transaction, Siemens also has just announced it will supply five advanced turbine plants to a North Carolina utility, to upgrade an existing plant.

Because gas is so attractive in terms of efficiency and environment, my guess is that U.S. production of unconventional gas will continue to grow, and that the industry will pay whatever it costs to satisfy local concerns about water and air pollution associated with fracking.

 

Warming Effects on the Major Asian Rivers

A new scientific report by Dutch researchers and published in this week's issue of Science magazine assesses the likely effects of climate change on the major Asian rivers and deltas. This is a subject that has been much in the public eye--and rightly so, considering its importance--since the disclosure of a very sloppy error in one of the IPCC assessment reports, and with ongoing difficulties setting the record straight about the fate of the Himalayan glaciers. The Science article, "Climate Change Will Affect the Asian Water Towers," finds that annual meltwater from the glaciers is extremely important in Pakistan's Indus River and in the Brahmaputra, which originates in China and runs down through Tibet to its delta, near Dhaka, in Bangladesh. Meltwater plays "only a modest role," on the other hand, in the Ganges, Yangtze and Yellow River systems.

The key elements in the Dutch analysis were, on the one hand, an examination of all upstream hydrological processes at elevations higher than 2000 meters, and, on the other, an inventory of downstream precipitation patterns. The net impact of retreating glaciers depends on the importance of meltwater relative to rainfall. Meltwater was found to have a dominating influence in the Indus system and a strong influence in the Brahmaputra, affecting potentially the food supplies of 35 million people. In the Ganges, Yangtze and Yellow River systems, rainfall plays a relatively greater role.

"We conclude," say the authors, "that although considerable cryospheric changes are to be expected, their impact will be less than anticipated by . . . the Intergovernmental Panel on Climate Change." The IPCC had predicted that because of global warming and glacial retreat, rivers like the Ganges, Indus and Brahmaputra soon would become "seasonal rivers." But the authors argue they already are seasonal rivers, and in some ways in a benign sense: Melt and rainy seasons generally coincide, and so a decrease in meltwater from warming will be compensated for to some extent by an increase in rainfall, also caused by the warming. In some cases, in fact, "an accelerated melt peak may thus alleviate a shortage of irrigation water in the drought-prone early stages of the growing season."

Even in the extreme scenario in which all the Himalayan glaciers disappear (as an IPCC report erroneously said could happen by 2035), the effects are most pronounced by far in the Indus and Brahmaputra basins. So, while those effects are nothing to sneeze at, global warming will not have a drastic impact on hundreds of millions or billions of Asians as the IPCC implied and has been explicitly claimed in reports on climate change and human migration.

Daimler Introduces Electric Smart Car in United States

Daimler Benz is getting set to roll out an electric version of its tiny Smart Car, though U.S. sales will begin only two years from now. The German company has been showcasing its plans this week and last with a string of Smart Cars parked on a residential street in Brooklyn (above), where members of the automotive press are given briefings. The cars, rather fetchingly painted to highlight certain design and safety features, make an engaging sight.

The plan is to lease 250 electric Smarts in the coming year, on a trial basis, to select customers in five urban areas: Portland, Ore., San Jose, Orlando, Indianapolis, and in the Interstate 95 corridor from DC to Boston. A few vehicles may also be placed in Austin, Detroil, and Los Angeles. Customers will make a down-payment of $2,500 and pay $599/month, and they'll get a four-year guarantee. Daimler introduced 100 electric Smarts in London in 2007, and currently is placing about 1500 more worldwide.

The electric Smart Car employs the so-called Smart fortwo drive system--fortwo to be read as for-two (not Smart fort-wo, as I perversely read it at first glance), to distinguish it from the discontinued Smart for-four . With an extension cord provided either with the car or at the "pump," the car can be charged either at 110 or 220 Volts, but not at a higher voltage. At 220 volts the car can be charged to roughly 80 percent capacity in three and a half hours, at 110 in about seven. So, Daimler's business model generally anticipates overnight charging at home, though it also will be possible to charge roadside at stations like the ones Coulomb will install in nine U.S. metropolitan areas.

As an enthusiastic and loyal driver of BMW's Mini Cooper, I have to confess that the Daimler Smart Car has always looked pretty dumb to me. The car's absence of any front end has always reminded me of the original VW, in which drivers routinely were impaled by the steering column in head-on collisions. Daimler makes a strong case that it has designed around such problems: Its handlers point out that the car is made of exceptionally strong steel and is shaped like a "nut"--not a walnut (as I initially understood), but the kind of nut you put on a bolt. Looked at from the side (above), the hexagonal support structure is in fact plainly visible, highlighted by the paint job.

The Smart Car, like the Mini, performs well in the most demanding crash tests. But those tests have limits, not taking into account for example scenarios in which the car is pushed, dragged, or thrown off the road by a much larger vehicle. Analysts including those at Consumer Reports have pointed out that drivers of any micro-cars are about 50 percent more likely than drivers of large cars to die in accidents..

In terms of performance, the electric Smart fortwo handles nicely in city traffic, darting and slithering through openings no other car can navigate. A single-geared vehicle, it is equipped with a 16.5 kWh lithium ion battery and accelerates from zero to 60 km/h in 6,5 seconds. It has a range of 135 kilometers. Daimler estimates that a typical commuter would need to charge the car only once a week.

 

 

DOE Demonstrates Ability to Track Sequestered CO2

Among the many obstacles to commercial-scale deployment of carbon capture and sequestration technology is the need to be able to keep track of all that CO2 that we want to pump underground. Now, the Department of Energy reports that a test project has demonstrated the feasibility of using perfluorocarbon tracers to track the movement of the gases in underground reservoirs.

The test, conducted in the San Juan Basin area in New Mexico, involved a site where about 35,000 tons of CO2 have been injected both to sequester it and to displace the methane locked underground, making it easier to collect. According to the DOE's National Energy Technology Laboratory, "The technology can measure concentrations as small as parts-per-quadrillion and differentiate injected CO2 from natural CO2."

The Obama administration has not wavered from its insistence on pursuing so-called "clean coal" technology, in spite of some of the government's own scientists' insistence that continuing to burn coal is the surest way toward the worst of climate change-related catastrophes around the world. (For an example, read NASA's Dr. James Hansen on mountaintop removal mining and coal in general.) The 2009 stimulus package included $3.4 billion aimed at CCS technology, and the NETL's press release list reads like a coal research funding program and little else. And there is little debate that the highly touted FutureGen coal project (artist's reflecting pool-pristine rendering above) has already proven to be more trouble than its multi-billion dollar price tag is worth.

The glaring problem with CCS is timing. Virtually all of those DOE projects have "demonstration" or "test" in front of the name, and no amount of money could bring CCS to the point where a meaningful amount of carbon dioxide is captured from coal plants on a time scale that meshes with what climate science calls for. As fights continue over climate and energy legislation and the billions of dollars in fossil fuel incentives and subsidies Congress provides, the question of whether CCS research is just another on that list is hard to avoid. The incremental progress like that seen in the perfluorocarbon tracer technology is promising, but only if there really is no desire to move away from coal completely.

Image via DOE

Advertisement

Newsletter Sign Up

Sign up for the EnergyWise newsletter and get biweekly news on the power & energy industry, green technology, and conservation delivered directly to your inbox.

Advertisement
Load More