Energywise iconEnergywise

Nuclear Groundshift

Well, it's more like a subtle shifting or resettling of the ground after a slight tremor than like a full-fledged earthquake. But there are distinct signs indicating that educated and environmentalist opinion is moving in a distinctly more pro-nuclear direction.

One signal, noted here six months ago, occurred during a debate among the nine candidates vying at that time to be New York City’s next mayor. Invited to take a cheap, anti-nuclear shot by the moderator—who asked them whether they would favor closing the controversial Indian Point nuclear power plant north of the city—eight of the nine said they could not favor closing it unless ways were found to replace its electricity with clean, zero-carbon power. (One of those eight was the man just elected mayor by an overwhelming majority.)

Another sign of shifting opinion came last week, with the airing on Friday evening of a pro-nuclear documentary by CNN, the global cable news network. “Pandora’s Promise,” made by director Robert Stone, did not score high in television ratings. Still, it is noteworthy for the fact that CNN aired it and that Stone, who made an anti-nuclear film in 1988, has switched sides.

Some of Stone's reasons for changing sides, to be sure, are questionable. He minimizes the gravity of the nuclear accidents at Chernobyl and Fukushima, and he may overstate the degree to which newer or alternative reactor designs would be immune to catastrophe. He certainly overstates the promise and understates the drawbacks of the so-called Integral Fast Reactor, a kind of breeder that would allegedly be almost proliferation-proof and consume its own waste. (An ancestor of that reactor concept, the Experimental Breeder Reactor II, is shown in photo.) Physicist Edwin Lyman of the Union of Concerned Scientists has subjected Stone’s treatment of the IFR to a withering critique, which seems sound to me in every single detail.

But Stone also does a good job of conveying the promise of new reactor designs being developed, and of getting across the reminder that today’s reactors are basically just the first shot humankind took at harnessing the atom for peaceful purposes. He asks, quite reasonably in my opinion, why we get so exercised about the possible dangers of ionizing radiation and reactor accidents when millions of people are dying each year from exposure to air pollution from coal-fired power plants and automobiles.

Among other things, the film includes interviews with several leading environmentalists who have switched sides on nuclear, the most prominent of whom is probably Stewart Brand, creator of the Whole Earth Catalog.  Another such environmentalist, not included in Pandora’s Promise, is George Monbiot, a zoologist and immensely influential climate activist in Europe. Monbiot has recently posted a blog expressing his dismay that Helen Caldicott, the Australian physician who for decades has been a leading anti-nuclear activist, is saying many things about atomic power that cannot be substantiated in the scientific literature.

Some of us who have been following Caldicott’s activities for years are not exactly shocked to learn that she has made unverifiable assertions. But it is noteworthy nevertheless when a grassroots leader of Monbiot’s stature makes that discovery and publicizes it.

Photo: Argonne National Laboratory-West



What California's Energy Storage Requirement Really Means

A few weeks ago California passed the United States' first energy storage mandate. Issued by the California Public Utilities Commission (CPUC), the mandate commits all investor-owned utilities in the state to collectively buy what the mandate refers to as “1325 megawatts of energy storage” by 2020.

But as many Spectrum readers pointed out in the comments section of a recent Energywise post, energy storage is usually measured in units of energy, like joules or megawatt-hours, not units of power like megawatts. So what does it mean to ask utilities to prepare 1325 megawatts of energy storage?

Presenting the stipulations of the mandate in megawatts was "on purpose; it was deliberate," says  Haresh Kamath, a program manager at the Electric Power Research Institute (EPRI), in Palo Alto. "But there’s no question it was a little bit surprising that it was only megawatts and not megawatt-hours.” 

EPRI provided the CPUC with analysis and metrics on the cost efficacy of today's energy storage options. Kamath says that the issue was brought up repeatedly in the proceedings surrounding the mandate, but CPUC wanted the utilities to have maximum flexibility in how they implemented the storage systems.

Read More

A Liquid Metal Battery for Grid Storage Nears Production

MIT spin-off Ambri is a step closer to bringing a novel liquid metal battery to the electricity grid.

The company on Thursday cut the ribbon on a new production facility in Marlboro, Mass., where it intends to make shipping-container size batteries. Ambri also said its first two customers will be a military base on Cape Cod, in Massachusetts, and a wind project in Hawaii. The company will be making prototypes and demonstration units in Marlboro for installation next year and intends to have a full-scale manufacturing facility in 2015.

Read More

Good Vibrations Boost Solar Cell Performance

If you feel the energized by the sounds of your favorite band, you are not alone.

Solar cells, it turns out, could have the same reaction. Music vibrations boost the energy output of solar cells that contain nanorods. So says a new study from Queen Mary University of London and Imperial College London.

The high frequency of pop and rock music cause vibrations that increased the energy generation of solar cells with clusters of nanorods. Scientists had already known that straining zinc oxide materials could increase voltage outputs, but the effect had not been tested extensively on solar cell efficiency. Other scientists are looking to use other nano materials such as nanowires to boost the efficiency of solar cells

The British researchers grew billions of zinc oxide nanorods and coated them with an active polymer that could convert sunlight into electricity. They discovered that when the solar cells were exposed to sound, the photovoltaic efficiency increased by as much as 45 percent.

"We thought the sound waves, which produce random fluctuations, would cancel each other out and so didn't expect to see any significant overall effect on the power output," study co-leader James Durrant, professor of photochemistry at Imperial College London, said in a statement.

"The key for us was that not only that the random fluctuations from the sound didn't cancel each other out, but also that some frequencies of sound seemed really to amplify the solar cell output - so that the increase in power was a remarkably big effect considering how little sound energy we put in."

The researchers noted significant improvement in solar cell performance with levels as low as 75 decibels, a sound level similar to busy street traffic. They didn’t go as far as to compare the benefits of one band versus another, but did find that not all musical genres offered the same benefits. 

"We tried playing music instead of dull flat sounds, as this helped us explore the effect of different pitches. The biggest difference we found was when we played pop music rather than classical, which we now realize is because our acoustic solar cells respond best to the higher pitched sounds present in pop music," said Durrant.

Rather than streaming music to solar panels, the research would more likely be used to develop power sources for products that are already exposed to high-frequency acoustic vibrations, such as cars or air conditioners.


Image: iStockphoto

Pre-Paid Microsolar Coming to the Philippines

When Filipinos on the island of Alibijaban need to charge the car batteries they rely on for electricity, they take an eight-minute boat ride to the mainland to recharge the batteries at a local shop.

Alex Hornstein, an MIT-trained engineer, is looking to cut out the boat ride and a lot of the cost. Hornstein is piloting cellular-connected microsolar in Alibijaban, according to a report in Fast Company.

The project, Tiny Pipes, has installed 60-watt solar panels on the roof of about 20 homes in Alibijaban in conjunction with the local utility, Quezelco. The panels come with a connection to a cellular network that controls the power flow from the panel.

For houses with a panel, Tiny Pipes will own the panel and customers rent the panels and pay for the power they use through a cellphone payment. If customers don’t want unlimited charge for the battery, they can set up a prepaid plan for a set amount of energy daily or weekly.

In the United States, the falling price of solar panels and innovative financing methods, primarily solar leasing, have led to a solar boom. There are both similarities and differences in some of the projects being piloted in the developing world, which also rely on some innovative financing schemes and lower hardware costs. 

Generally speaking, remote villages pay a far higher percentage of their income towards power than developed or grid-connected regions. Fast Company reported that the residents of Alibijaban consume about one penny per day of electricity, yet they pay about US $1.50 to $2 per week to charge batteries.

In many poor regions, homes also rely on dirty kerosene lamps to provide light at night. Peru has a pilot to move 126 communities onto solar panels, with a goal of moving 500 000 rural households onto solar power. Other projects, such as SunBlazer, provide solar charging stations on wheels that are operating in some remote villages in Haiti.

Another group, SharedSolar, wants to go one step further and provide solar-powered microgrids that are connected to mobile payments so communities can not only have lights in homes but also power small businesses, such as selling ice. Some solar projects are looking to power other basic services, like clean water in India

Hornstein and his co-founder Shawn Frayne first wanted to make microsolar a reality in remote areas by lowering the cost and extending the lifespan of the hardware. They developed a small machine, Solar Pocket Factory, which makes microsolar photovoltaic panels that can power small electronics. They claim their panels have a 10-year lifespan, five times the life of traditional microsolar.

In their Kickstarter campaign, they also claim their panels can be produced locally for a lower cost than traditional microsolar because it is automated instead of made by hand. As they developed the Solar Pocket Factory, however, they realized that the circuitry they developed to connect the panel to mobile networks was ultimately a more significant breakthrough. Currently, there is not a panel maker that offers a wirelessly controlled panel from the factory.

Hornstein told Fast Company the panels have already withstood two typhoons and expects to expand to another 200 homes on Alibijaban and 1000 homes in another province next year.

“I want to be able to deploy Tiny Pipes at a scale that makes a dent,” said Hornstein in the article. “I'll start feeling like we're reaching that scale when we've hit a million installed panels.”


Photo: Alex Hornstein



Climate Monster Found Lurking in Ocean Depths

An article appearing in the November 1 issue of Science magazine analyzes mid-depth Pacific Ocean temperatures going back 10,000 years and finds a drastic increase in the amount of heat being absorbed and stored by ocean waters during the last 60 years. The study, by authors at Rutgers University, Columbia University's Lamont-Doherty Earth Observatory, and Woods Hole Oceanographic Insitution, reconstructs the history of temperatures in the western Pacific roughly 500-900 meters down through chemical analysis of shells from a species of single-celled organisms called foraminifers (or "forams").

The ratio of magnesium to calcium in the particular foram selected for study and found in ocean sediment cores, Hyalinea balthica, is a precise indicator of ambient temperature at the time the organism lived and died--a standard technique in paleoclimatology.

The three researchers found that the prevailing trend through most of the 10 000 year period was toward cooler temperatures. The cooling rate increased markedly during what's called the Little Ice Age of the European late Middle Ages, only to stop and reverse around the year 1600. After that the rate of Pacific warming was very gradual until about 60 years ago, when it leaped by a factor of 15. "Over a long time, the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that reflect and, more importantly, affect the global climate," the article says.

There have been times in the ocean records that the three researchers compiled when water temperatures have been considerably higher than they are today, let it be said. The researchers emphasize the rate at which heat can be absorbed or ejected, and the big increase in the uptake rate during recent decades. “We may have underestimated the efficiency of the oceans as a storehouse for heat and energy,” commented Yair Rosenthal of Rutgers, the principal author of the study. “It [that heat storage] may buy us some time—how much time, I don't really know—to come to terms with climate change. But it's not going to stop climate change.”

The thinking is that storage of heat from a warming atmosphere represents a kind of lurking, growing monster that eventually will surface and return to the atmosphere.

Offshore Wind Farms Just Need a Little Stagger to Generate More Power

Neat rows of wind turbines dot seas and oceans across the world. But setting offshore wind turbines in straight lines may limit their power production, according to a new study.

Whether wind farms are on or off shore, there is a tradeoff between getting maximum energy from each individual turbine and packing a greater number of turbines into the space. As each turbine pulls energy from the wind, there is less energy in the downstream wind, which causes array losses for the entire wind farm. (Turbines not only affect their immediate neighbors, they can also affect other arrays miles away.) 

But there may be a simple solution to boost energy production without expanding the boundaries of offshore wind farms. Researchers at the University of Delaware found that staggering turbines in the ocean can improve annual power capacity by 13 to 33 percent. The study appeared in the September issue of Geophysical Research Letters.

“Staggering every other row was amazingly efficient,” Cristina Archer, associate professor of physical ocean science and engineering and geography in University of Delaware's College of Earth, Ocean, and Environment, said in a statement.

Read More

Could Energy Costs Doom Aereo’s TV Streaming Service?

Back before Netflix, Hulu, or even cable television, we all relied on antennas to capture video signals. What's old is new again with Aereo, a TV streaming service that takes the concept of rabbit ears into the 21st century.  

Most of the news about the start-up has centered on its legal battles with incumbent broadcast networks, but according to a report in the Wall St. Journal, it's the company’s hardware that could pose the biggest challenge as it tries to grow.

When you sign up for Aereo, you are assigned a tiny remote antenna and DVR that can record live broadcasts and play them back as streaming video. If you want to record Parks and Recreation on NBC, for instance, that miniature antenna tunes into the right frequency for your location. Even if other people record the same show, the recording for each customer is unique. The signal goes to Aereo’s transcoding equipment that converts the signal to one that can be sent over the Internet. 

The problem is that each antenna uses about five to six watts of power. That’s less than many set-top boxes consume, but the difference is in who pays the energy bill. With cable, the customer, not the cable company, pays for the power consumption of the set-top box. The Wall St. Journal noted that if Aereo were to scale its New York subscription base to about 350 000 customers, the energy cost would be roughly US $2 million per year. New York, which has relatively high energy prices for the United States, is also not its only market. Chet Kanojia, CEO of Aereo, told the Wall St. Journal he hoped to be in nearly 20 markets by the end of the year. 

Read More

Ethiopian Wind Farm Adds Five Percent of Country's Total Electricity Capacity

The 120-megawatt, 84-turbine Ashegoda Wind Farm in Ethiopia opened this week in an arid region about 765 kilometers from the capital, Addis Ababa. The farm was completed in three phases and has actually been generating power for some time now, but was formally inaugurated by the prime minister on Saturday.

Those 120 MW actually represent about 5 percent of Ethiopia's entire installed electricity generating capacity based on the Energy Information Administration's latest data (and a more recent interview with the head of Ethiopia's state-run utility). Scaling up Africa's energy supplies is considered an enormous priority for helping to draw many millions of people out of poverty, and doing so with renewable energy is a no-brainer. Ethiopia alone has an estimated wind power potential of more than 1000 gigawatts (roughly the installed electricity capacity of the United States, from all energy sources). And while only a few projects are in the works in that country, an African Development Bank study from earlier this year reported that about 10.5 gigawatts of wind power currently in the pipeline across the continent.

The big controversy with electricity expansion in Africa relates to another renewable resource: hydroelectric power. Ethiopia already gets 90 percent of its existing electricity from dams, a source obviously fraught with environmental concerns of its own. And the country is moving ahead on a truly massive project, the Grand Ethiopian Renaissance Dam, which, at nearly 6000 MW, will triple the country's total capacity. Egypt has concerns that the dam, which will create a massive reservoir on the Blue Nile, will affect the downstream flow of the Nile to an extent that will affect both its own power supply and cause other water-related issues.

And then there's the ever-present threat of the Grand Inga Dam, a hydroelectric behemoth still under consideration on the Congo River. If built to its full capacity, it would be nearly double the size of the biggest hydroelectric project on the planet, China's Three Gorges Dam, at around 40 000 MW. The latest news on that project has construction for pieces of it beginning in 2015.

The quick-hit potential of such massive electricity development is hard to resist in a continent where 500 million people lack access to power. But it is exciting as well that wind power projects like the one in Ethiopia are starting to take hold, along with the ever-present potential of Saharan solar power. And the money for these projects is starting to flow as well, highlighted by U.S. President Barack Obama's announcement earlier this year of a US $7 billion grant for the Power Africa project; much of that cash will go toward renewable energy projects.

Photo: Kumerra Gemechu/Reuters

California's First-in-Nation Energy Storage Mandate

California has adopted the United States' first energy storage mandate, requiring the state's three major power companies to have electricity storage capacity that can output 1325 megawatts in place by the end of 2020, and 200 MW by the end of next year. The new rule issued by the California Public Utilities Commission (CPUC) will be key to implementation of the state's ambitious renewable portfolio rules, which calls for 33 percent of delivered electricity to come from renewable sources by 2020 and virtually guarantees that California, along with Germany, will remain in the world vanguard of those aggressively building out wind and solar.

[Editor's note: For an explanation of why the mandate is expressed in units of power instead of energy follow this link.]

By common expert consent, wind and solar can only reach their full potential if storage is provided for, as otherwise little-used generating capacity must be held in reserve for the times the wind does not blow and the sun does not shine. California's landmark rule was written by Commissioner Carla Peterman, newly appointed to the CPUC late last year by Governor Jerry Brown.

"This is transformative," Chet Lyons, an energy storage consultant based in Boston, told the San Jose Mercury News, the state's most tech-savvy newspaper. "It's going to have a huge impact on the development of the storage industry, and other state regulators are looking at this as a precedent."

Though the new rule was adopted by the five CPUC commissioners unanimously, two expressed concerns about the strorage mandate's being achieved at reasonable cost to consumers, especially as large pumped storage (hydraulic) facilities do not qualify. There are a wide range of technologies that do qualify, including batteries and flywheels, but costs are generally high. Pike Research has concluded that the United States as a whole could have as much as 14 GW from storage by 2022, but only if storage costs come down to the vicinity of to about $700-$750 per kilowatt-hour.

This post was modified on 7 November for clarification.

Photo: PG&E


Newsletter Sign Up

Sign up for the EnergyWise newsletter and get biweekly news on the power & energy industry, green technology, and conservation delivered directly to your inbox.

Load More