Automaton iconAutomaton

Obama Commanding Robot Revolution, Announces Major Robotics Initiative

barack obama national robotics initiative robots carnegie mellon
POTUS kept an eye on robots near him, just to make sure they were all friendlies. Photo: White House

President Barack Obama loves robots. He’s invited bots to the White House and has even befriended a Japanese android. But now Obama has gone one step further: He’s decided to lead what may be a profound robotics revolution.

In a visit today to Carnegie Mellon University's National Robotics Engineering Center, Obama launched the Advanced Manufacturing Partnership, a $500 million program to bring together industry, universities, and government to invest in emerging technologies that can improve manufacturing and create new businesses and jobs.

Robots are a big part of this effort. The administration's new National Robotics Initiative seeks to advance "next generation robotics." The focus is on robots that can work closely with humans—helping factory workers, healthcare providers, soldiers, surgeons, and astronauts to carry out tasks.

"You might not know this, but one of my responsibilities as commander-in-chief is to keep an eye on robots," Obama quipped at the beginning of his speech. "And I'm pleased to report that the robots you manufacture here seem peaceful. At least for now."

The National Robotics Initiative involves the National Science Foundation, the National Institutes of Health, NASA, and the Department of Agriculture, which combined will make available up to $70 million per year to fund new robotics projects.

President Obama tours the Natl Robotics Engineering Center
Obama tours the National Robotics Engineering Center at Carnegie Mellon. Photo: White House

Obama said he visited a local company, RedZone Robotics, which makes a robot that explores water and sewer pipes [photo, below]. "It is fascinating stuff," he said. "It can go through any sewer system. It’s operated remotely by the municipal worker. It’s got a camera attached so it can film everything that it’s seeing." Obama said the robot could potentially save cities millions in infrastructure costs and create jobs for workers to operate the robots and pore through the data collected.

I asked Dr. Henrik Christensen, a robotics professor at Georgia Tech who helped to establish the new initiative, what technical challenges they plan to attack. He explains that traditional robots are good at tasks that require precision and repetition, but to work alongside human workers the robots need to be smarter and safer.

"If we want to build a robot coworker, we need to have safer systems, new materials, better sensors and actuators," he says.

One example is a robot that can observe a human worker performing a task—say, assembling parts of a car—and replicate that task, with the human supervising and assisting the robot if necessary. Another example is a robot that can help workers pack goods in a pallet or truck in an optimal way, to improve logistics.

The NSF, recently criticized for funding robotics projects some deemed wasteful, and the other agencies explain that a broad range of research will be funded, but with an emphasis on robotic systems as people's "co-workers, co-inhabitants, co-explorers and co-defenders." From the program solicitation:

This theme recognizes the emerging mechanical, electrical and software technologies that will make the next generation of robotic systems able to safely co-exist in close proximity to humans in the pursuit of mundane, dangerous, precise or expensive tasks. Co-robots will need to establish a symbiotic relationship with their human partners, each leveraging their relative strengths in the planning and performance of a task. This means, among other things, that for broad diffusion, access, and use (and hence, to achieve societal impacts), co-robots must be relatively cheap, easy to use, and available anywhere. As the US population ages and becomes more culturally and linguistically diverse, these co-robots may serve to increase the efficiency, productivity and safety of individuals in all activities and phases of life, and their ubiquitous deployment has the potential to measurably improve the state of national health, education and learning, personal and public safety, security, the character and composition of a heterogeneous workforce, and the economy, more generally.

"Our understanding of the applications of robotics technology has expanded," says Dr. Matt Mason, director of Carnegie Mellon's Robotics Institute. "Robots are not just for dull, dirty, and dangerous jobs. Their greatest value is working with people." He says that in addition to reinventing manufacturing, robots will play ever more important roles in agriculture, medicine, rehabilitation, and elder care.

barack obama visit redzone robotics carnegie mellon speech on national robotics initiative
Obama with a robot built by RedZone Robotics for inspecting water and sewer pipelines. Ron Wolf and Sub Vallapuzha of RedZone show the President how the robot can be remotely controlled.
Photo: Tim Kaulen/Carnegie Mellon University

And why start a new initiative when agencies are already funding cutting-edge robotics projects? Dr. Christensen of Georgia Tech says robotics research has been too fragmented; what is needed now is coordination.

"The most important thing is that we keep track of the results and make sure that innovations get transitioned to companies."

He says that claims that robots take jobs away from people don't take into account the fact that robots—and other technologies, for that matter—not only help keep companies competitive but also allow them to grow and hire more people. 

The White House Office of Science and Technology Policy, which was involved in spearheading the new initiative, listed several reasons to make robotics a priority:

  • Robotics can address a broad range of national needs such as advanced manufacturing, logistics, services, transportation,  homeland security, defense, medicine, healthcare, space exploration, environmental monitoring, and agriculture;

  • Robotics technology is reaching a “tipping point” and is poised for explosive growth because of improvements in core technologies such as microprocessors, sensors, and algorithms;

  • Robotics can play an important role in science, technology, engineering and mathematics (STEM) education because it encourages hands-on learning and the integration of science, engineering, and creative thinking; and

  • Members of the research community such as the Computing Community Consortium and program managers in key sciences have developed a shared vision and an ambitious technical agenda for developing next-generation robotic systems that can safely work with humans and augment human capabilities.

But of course, the real reason behind the initiative: Obama loves robots.

cmu sensabot signed by barack obama national robotics initiative speech
Obama left his signature on the Sensabot, a robotic vehicle designed to monitor dangerous environments. Photo: Byron Spice/Carnegie Mellon University

Watch the speech:

Here are more reactions issued by leading roboticists:

“Investing in robotics is more than just money for research and development, it is a vehicle to transform American lives and revitalize the American economy. Indeed, we are at a critical juncture where we are seeing robotics transition from the laboratory to generate new businesses, create jobs and confront the important challenges facing our nation. The nation’s robotics community is collectively poised to advance the technology and at the same time accelerate the transition of these technologies from the lab into the market.”
— Helen Greiner, president and CEO, CyPhy Works; president, Robotics Technology Consortium; co-founder, iRobot

“A well coordinated National Robotics Initiative will provide the leadership and investment necessary to accelerate the advancement of next generation robotics technologies and knock down the regulatory and technological barriers necessary to lead to wide spread adoption and repatriation of US manufacturing jobs.”
John Dulchinos, president and CEO, Adept Technology

“If we want to end the talk of a 'jobless recovery,' we should increase our national investments in robotics and create millions of high-paying jobs in the process. How? By developing improved robotics technology that can be applied to reviving our manufacturing industries, protecting the environment, reducing our dependence on foreign oil and helping provide quality care for our growing elderly population.”
— Jeff Burnstein, president, Robotics Industry Association

"The United States has pioneered research in Robotics and Automation; we are now poised to develop the next wave of robots that will dramatically enhance the abilities of human workers in factories, labs, hospitals, and homes."
Ken Goldberg, professor of engineering and information, U.C. Berkeley

"Robotics is a game-changer! President Obama's National Robotics Initiative will lead to new innovative technologies that will invigorate America's manufacturing economy by creating new opportunities and new jobs, improve our quality of life by revolutionizing health care and medicine, and make our nation safer with the development of robots for defense, security and emergency response."
Vijay Kumar, professor, University of Pennsylvania

"The use of robotics in medicine and health care has seen substantial growth in the last decade. Telerobotic systems are routinely used to perform surgery, resulting in shorter recovery times and more reliable outcomes for patients. Robotic rehabilitation systems are delivering physical and occupational therapy, enabling treatment that is continuously adaptable to a patient's needs. In the United States, robots are stimulating the development of new treatments for a wide variety of diseases and disorders, which will improve both the standard and accessibility of care."
Allison Okamura, professor of mechanical engineering, Stanford University; Maja Mataric, professor of computer science, neuroscience, and pediatrics, University of Southern California

"RE2 Inc. is representative of small robotics engineering businesses across the United States that are contributing to the economic growth of their regions.  These small businesses form the backbone of the new economy  by leveraging federal and private investments to create new high-tech jobs and ensure that the United States remains a leader of global innovation."
Jorgen Pedersen, president and CEO, RE2

Last updated 6/26 10:05 p.m.

READ ALSO:

Senator Calls Robot Projects Wasteful
Tue, June 14, 2011

Blog Post: U.S. Senator Tom Coburn criticizes the NSF for squandering "millions of dollars on wasteful projects"

DARPA's Nano Air Vehicle Program
Wed, June 01, 2011

Blog Post: DARPA's got itself a tiny lifelike flying spy robot, and you'll never look at hummingbirds the same way again

Robots Training Surgeons of Tomorrow
Mon, June 13, 2011

Blog Post: Robotic tools may lead to better methods of training and evaluating surgeons

Obama Meets Japanese Robots
Mon, November 15, 2010

Blog Post: The president was greeted by humanoid HRP-4C and caressed Paro the robotic seal

NASA's Robotic Lunar Lander Gets 2 Meters Closer to The Moon

Infrared view of NASA's robotic lunar lander prototype

NASA has been working on a prototype robotic lander designed to explore the moon, asteroids, comets, and other airless bodies that don't demand complex and scary aeroshells and parachutes for safe landings. The lander, which seems to have no sexier name than "robotic lander testbed," is about the size of a golf cart and is powered by hydrogen peroxide catalyst engines.

These engines run 90 percent hydrogen peroxide, which is just like the stuff that you can buy at the store, except way more concentrated, making this lander one of the more eco-friendly spaceships out there. This overview video from a few months ago takes you through the prototype:

Just this past Monday, the training wheels officially came off, and the robotic lander took itself to an autonomous two meter hover for 27 seconds. The video below shows the entire flight (along with some touching audio of the jubilant crew at the end) from several angles along with some sweet infrared footage:

Part of the deal with the robotic lander testbed is to try to develop a versatile platform that can be used to field missions that are relatively inexpensive and efficient, and from the sound of things, they're off to a good start. In the future, we may see robotic landers like this landing on the moon to check for volatiles (like water), listening for moonquakes, or even hitching rides on near-Earth asteroids.

[ NASA ] via [ Wired ]

NATO's First Combat Casualty in Libya Is a Robot

On Tuesday morning, a Northrop Grumman MQ-8 Fire Scout was shot down by Moammar Gadhafi's forces in Libya, becoming NATO's first combat casualty in the conflict. The U.S. Navy has been testing Fire Scouts for five years or so, and the robots have progressed from shipboard autonomous landings all the way to accidental drug busts, but this is the first we've heard of them actually involved in a major military operation.

Presumably, the Fire Scouts are being used solely as surveillance platforms, although they've also been successfully tested as weapons platforms, as you can see in the second half of this vid:

So far, the Navy hasn't said much about what exactly the Fire Scout was doing when it was shot down beyond the obligatorily vague "performing intelligence, surveillance and reconnaissance over Libya to monitor pro-Gadhafi forces threatening the civilian population." It's remarkable how not big of a deal this incident is relative to what the response would have been had (say) a manned Apache gunship been shot down instead, as Libyan state TV originally claimed.

Photo: Northrop Grumman

[ Fire Scout ] via [ BBC ] and [ Danger Room ]

'Bots High' Documentary Takes You Inside the Fierce and Hormonal World of High School Robotics

It's a blast to go to a combat robotics event and watch two metal behemoths beat the battery packs out of each other in violent deathmatches. Most spectators, though, really don't have a clue about just how much time, effort, skill, creativity, cooperation, and (quite literally) blood, sweat, and tears go into the creation of one of these machines. Also, most spectators likely assume that there's no way they would ever be able to get involved in what looks to be such a technical pastime, but even robotics veterans had to get their start somewhere, and increasingly, that somewhere is high school. 

bots high film movie documentaryBots High, a feature documentary produced and directed by Joey Daoud, takes us along as three teams of high school students spend four months building 15 pound and 120 pound combat robots for a national competition in Florida. With help from faculty, parents, and volunteers, the teams (two of which are made up entirely of girls) have to design and then fabricate robots that have a fair chance of getting totally destroyed over the course of a single match.

Combat robotics is unlike any other robot competition (or most competitive sports, period) in that you run the risk of having months, or even years, of work completely obliterated in the space of three minutes or less. And not just "oh we have to to fix it now" obliterated, but more like "go get a broom to sweep up the sad little pile of metal splinters that used to be your prized combat robot" obliterated.

For the audience, watching this happen is a brief and highly entertaining tragedy. For the teams who build the robots, it's obviously a much bigger deal, and something that's probably impossible to understand without experiencing it yourself. By taking us through much of the process (the human process as well as the mechanical one), Bots High helps to provide some background and context to the sport as a whole, as you watch just how much effort it takes to get a robot from a design concept to something that's able to hold its own in the combat arena.

bots high film movie documentary

As the title implies, Bots High (which is 83 minutes long) spends time not just on the robots, but also on the environment in which they were created: high school. I found myself to be very impressed (perhaps even inspired) by the level of support that the teams received from faculty, parents, and volunteers. I'd like to think that this is because combat robotics (and robotics in general) is recognized as an incredible educational tool, because it absolutely is. You can disguise it in remote-controlled violence all you want, but the bottom line is that these kids are learning to design, to program, and to build with their hands. They're learning to work in teams, to troubleshoot, and to think on the fly. These are things that aren't especially easy to teach in the traditional sense, but they just happen in the context of combat robotics. It's not just about the fun, it's also about the future, and anybody who knows a kid who's interested in building stuff should absolutely watch this movie and then figure out a way to get themselves involved.

The stars of the film, for better or worse, are definitely the high school students on the individual teams. Consequently, there's, like, a lot of, like, you know, high school-ness that you'll have to sit through. To some extent, that's part of the charm: these kids aren't all super-nerds. They have lives, they have other priorities, they have hormones (ugh), and frequently they don't have much of a work-ethic. But they're also extraordinarily passionate about their robots, with a focus and level of commitment that I can't recall ever having at that age.

bots high film movie documentary

There might be a little too much time, though, spent on the obligatory high school boy/girl drama. It doesn't help that Will and Elizabeth (members of opposing teams) are flirting with each other while giggily trying not to be obvious about it, a phase that (even at my relatively advanced age) I definitely remember suffering through, and we're sort of left wondering whether they'll get to first base by the end of the film. Spoiler alert: maybe, but I definitely started to think to myself, "Okay, lock those two in a closet already and let's get back to the robots."

Fortunately, the film does get back to the robots, and in a big way. I certainly won't ruin the ending, but there's laughter and tears and violence (the good kind of violence) and lots and lots of screaming (the good kind of screaming), and by the wonderful end of it all, I was ready and willing to go back to high school (!) and have this whole amazing robotics experience that I so obviously missed out on.

The bottom line: If you can stand to be reminded of high school, this is a very well executed and altogether enjoyable documentary that might just inspire you to get involved in combat robotics yourself. And you absolutely should.

Bots High is currently being shown at film festivals. It will be available on DVD and online on Netflix and iTunes later this year. There will be a special free screening day on October 6th at multiple locations; to find a screening near you (or host one yourself) check out the website below.

[ Bots High ]

Watch This Little Termite Robot Build Itself Some Stairs

Swarms of robots might not always seem like the friendliest things to have in your life, but next time you need a tiny stairway, this hard-working little robot named Kali and a bunch of its friends are here to serve.

Kali is part of Harvard's Termes project, which is developing a swarm construction system where lots of little robots team up to build structures that would be impossible for any one single little robot to put together. It's called "Termes" after our noble and endlessly destructive pals the termites, who use teamwork to fabricate mounds of earth up to 30 feet high. Like termites, Termes robots are simple and autonomous, and are able to cooperatively move heaps of standard building blocks (specially designed to allow the robots to both lift and crawl around on them) to create just about anything, as long as you give them enough blocks and enough time.

For example, the demo below shows Kali using just a few simple sensors to autonomously construct a staircase to scale a wall of an unknown height, based on previous experience with such situations:

Nicely done. While this is just one robot, you can easily extrapolate to what might be possible with swarms of robots, and it's not just bigger staircases. Get enough of these little guys together and they'll build you your very own fort, as the simulation at the end of this next video shows:

The Termes Project comes from Harvard's Self-organizing Systems Research Group, the same dudes responsible for the kill-o-bots kilobots we met last week. They'll be presenting this work at the 2011 Robotics: Science and Systems conference next week in LA, and you can read the full paper at their website.

[ Termes Project ]

READ ALSO:

Kilobots Are Cheap Enough to Swarm in the Thousands
Thu, June 16, 2011

Blog Post: What can you do with a $14 robot? Not much. What can you do with a thousand $14 robots? World domination

Robot Uses Supersonic Jets of Air to Stick to Almost Anything
Tue, May 24, 2011

Blog Post: By blowing air across a surface really, really fast, this robot can suck onto everything from metal to bricks to cloth

Little Amphibious Tumbling Robot Tackles Tough Terrain
Wed, May 25, 2011

Blog Post: The secret to making a small robot that can sink, swim, and slog through sand? Easy: just teach it to do somersaults

Gecko-Inspired Window Washing Robot is Powered Entirely by Water
Fri, May 27, 2011

Blog Post: This climbing robot washes windows with water, sticks with water, and even moves with water power

Autonomous Boats Take On Obstacle Courses, Fake Fires in RoboBoat Competition

Somehow, it's been an entire year since the 2010 RoboBoat Competition. Rather than letting all of those industrious teams improve their robots to be better able to complete the existing course, the organizers added a whole bunch of practically impossible new challenges. Practically impossible, sure, but also pretty sweet, since they involve using deployable rovers to retrieve objects and autonomous water cannons to put out (fake) fires.

You may be wondering why such seemingly trivial tasks like navigating between different colored buoys is so tricky, but remember that this is all taking place on water, which is covered in nasty things like reflections and waves and hostile swans. So whenever the sun angle changes (an event that tends to happen quite often throughout the day), everything looks slightly different for the boats' cameras, sensors, and vision algorithms.

Anyway, luckily for you there's some excellent video recap of all three days of the event, so you can ignore my blathering and just watch things unfold for yourself. Swans beware!

[ RoboBoat 2011 ]

Microsoft Releases Kinect SDK, Roboticists Cackle With Glee

One of the cheapest and most effective pieces of 3D mapping and gesture sensing hardware you could possibly hope for has just gotten an official SDK (software development kit) release. We're talking about Kinect, of course, and Microsoft has benevolently decreed that you no longer have to hack the sensor to get some non-gaming use out of it. Here's a few things you have to look forward to:

  • Raw sensor streams: Access to raw data streams from the depth sensor, color camera sensor, and four-element microphone array enables developers to build upon the low-level streams that are generated by the Kinect sensor.

  • Skeletal tracking: The capability to track the skeleton image of one or two people moving within the Kinect field of view make it easy to create gesture-driven applications.

  • Advanced audio capabilities: Audio processing capabilities include sophisticated acoustic noise suppression and echo cancellation, beam formation to identify the current sound source, and integration with the Windows speech recognition API.

Kinect is just one example of how robotics has been successfully piggybacking on other tech to get access to sensors and other hardware that's super effective and super cheap at the same time. Microsoft isn't making Kinect for robotics, but we don't care, we're perfectly happy to steal it and put it to better use than they ever could. I mean, come on, games? Psh! Try this stuff on for size.

The other advantage of having cheap and effective hardware with an SDK is that it helps the robotics community share ideas. It's the same basic philosophy as the PR2 (and ROS): if everyone's developing for the same platform, you can save yourself tons time and money by sharing code. So from a hobby robotics standpoint, you don't have to know a lot about Kinect to take advantage of it, since you can just adapt the clever things that other people have developed for the platform to your particular project.

You can download the Kinect SDK beta right now; it's free, but Windows 7 only and for use with Visual Studio in C++, C#, or VB. If you still need the hardware, Kinect sensors are a mere $150 at your friendly local gaming emporium.

Oh and by the way, we should also mention that the original Kinect hardware developer, PrimeSense, has partnered with Asus to develop a PC version of Kinect that they're calling "WAVI Xtion." No, I don't know how it's pronounced, but I do know that you can expect it in the second quarter of 2011, i.e. pretty much now.

[ Kinect for Windows Beta SDK ]

READ ALSO:

Top 10 Robotic Kinect Hacks
Mon, March 07, 2011

Blog Post: Microsoft's Kinect 3D motion detector has been hacked into lots of awesome robots, and here are our 10 favorites

TurtleBot: Mobile 3D Mapping and ROS
Tue, April 05, 2011

Blog Post: Willow Garage has created an affordable, but still capable, ROS development platform

Hands-Free Roomba With Kinect
Mon, February 14, 2011

Blog Post: Now you can enjoy autonomous robotic vacuuming with direct gesture control using a hacked Kinect

Kinect Teleoperated Robot Does Pushups
Mon, January 03, 2011

Blog Post: Robots are ready and willing to help take over all of our hard work, and that includes exercise

Kilobots Are Cheap Enough to Swarm in the Thousands

These are Kilobots. They're fairly simple little robots about the size of a quarter that can move around on vibrating legs, blink their lights, and communicate with each other. On an individual basis, this isn't particularly impressive, but Kilobots aren't designed to be used on an individual basis. Costing a mere $14 each and buildable in about five minutes, you don't just get yourself one single Kilobot. Or ten. Or a hundred. They're designed to swarm in the thousands, although the Harvard group that's working on them is starting out with a modest 25:

We've seen lots of examples of swarm robotics, but what we decide to call a "swarm" often isn't, really. There is (or should be, at any rate) a distinction between a group of robots cooperating on a task and a true swarm of robots, and for the purposes of this article, I'm going to arbitrarily assert that a group of robots turns into a swarm of robots when you can't easily count how many individual robots there are. So like, these swarming MAVs? Not really a swarm. Swarmanoid? Not a swarm yet. Swarm bots are getting closer. What definitely makes the cut are projects like RoboSwarm and FlyFire, which use anywhere from hundreds to thousands of small robots all at once.

There's a lot you can do with gigantic swarms of robots, but there are two big obstacles to deploying them: programming, and charging. If you can't figure out a way to do these things efficiently (i.e. not on an individual basis for each robot), it negates a big part of the swarm appeal. In the case of the Kilobots, they can all be programmed at once with an infrared controller, and to charge them, the bots can simply be sandwiched between two conductive surfaces. The fundamental idea here is that any interaction with a robot swarm has to be scalable, such that an increase in the number of robots in the swarm doesn't result in an increase in the amount of time it takes to interact with the swarm.

I should point out that the other big obstacle to robot swarm deployment is price, which is why kilobots are deliberately so cheap: at $14 each, a thousand robots is actually an achievable number with a modest grant, which is something that probably has not been possible before. Generally people who want to experiment with large swarms have had to be content with computer simulations, which is fine, but at some point you have to try things out in the real world (or as close as you can get in a lab), and Kilobots can make that happen.

The Self Organizing Systems Research Group at Harvard is planning to expand their Kilobot collective to 1024 robots, and then they'll teach the swarm to demonstrate behaviors like self-healing and collective transport. Better hide your kids. Also, for the record, I'm pretty sure it's "Kilobots" and not "kill-o-bots." But who really knows until it's too late, right?

[ Kilobots ] via [ Hack A Day ]

READ ALSO:

German Robot Plays Pool, Throws Down Robot Pool Gauntlet
Fri, June 03, 2011

Blog Post: With several different human-sized robots now capable of playing pool on real tables, a confrontation seems inevitable

Cutest Quadcopter Ever Sounds Like a Swarm of Angry Bees
Mon, May 02, 2011

Blog Post: This quadcopter measures only about 10 centimeters on a side, but it's just as agile as its big brothers

Awesomely Bad Ideas: Teaching a Robot to Sword Fight
Fri, May 13, 2011

Blog Post: Georgia Tech has given a robot a sword and told it that humans are out to get it, all in the name of safety

Japanese Ministry of Self-Defense Builds Flying Robot Soccer Ball
Thu, June 09, 2011

Blog Post: Why does the Japanese Ministry of Defense need a flying robot soccer ball? We can only hope it's for flying robot soccer

Libyan Rebels Making Armed Robots From Power Wheels Toys

Libya rebels remote controlled machine gun vehicle

Armed robots have been making their way from science fiction to mainstream combat at an aggressive pace. The U.S. military is trying to be cautious about the whole thing (too cautious for some and not cautious enough for others), but most people would probably acknowledge that increased reliance on unmanned systems is, for better or worse, an inevitability. This is because robots offer many advantages in conflict zones, the first and foremost being that sending a robot into a dangerous situation often means that a human doesn't have to go into that same situation.

These advantages aren't realized solely by the U.S. military. They're not realized solely by governments in general, either. Robots have been getting cheaper and more accessible, and people with an interest in robotics have for years been able build their own systems to take over work that's dull, dirty, or dangerous. It should be no surprise, then, that rebels in Libya have started cobbling together their own armed robots out of Power Wheels toys, video cameras, radios, and machine guns:

So what does this mean for the present and future of military robotics? First, it's a vivid illustration of the potential implications of a rapidly descending barrier to entry for this kind of technology. Anyone can (on principle, at least) build a robot, and given the need or the motivation, anyone can put a gun on one, too. Second, the fact that anyone can build something like this is an equally vivid illustration that despite whatever qualms we may have about military robotics, it's not only going to happen, it's happening already. Whatever the ethical implications may be, this is becoming the new reality faster than we might like, and it's something that we're going to have to prepare for.

[ Al Jazeera ] via [ Jalopnik ]

U.S. Senator Calls Robot Projects Wasteful. Robots Call Senator Wasteful


Tom Coburn, a senator from Oklahoma, and PR2, a robot from California.

A U.S. senator has cited three robotics projects as examples of "wasteful" research that lack useful applications and shouldn't have received government funding.

In a recent report, Senator Tom Coburn of Oklahoma takes aim at the National Science Foundation, the premier source of funding for science and engineering in the United States, raising questions about the agency's management and priorities. In one section of the report, Coburn criticizes the NSF for squandering "millions of dollars on wasteful projects," including three that involve robots.

"A dollar lost to mismanagement, fraud, inefficiency, or a dumb project is a dollar that could have advanced scientific discovery," the report says.

Coburn didn't give the roboticists a chance to respond, so I reached out to the three groups—from the University of California, Berkeley; University of California, Davis; and Rowan University, in Glassboro, N.J.—to hear their side.

Of course, they aren't exactly thrilled to see their work "featured" in the report. One scientist quipped that Coburn has just sparked a robot uprising. Picture hordes of bots descending on Washington, D.C. to show the senator who's wasteful by using him as cookie dough.

The researchers say they welcome scrutiny and agree that there are many improvements the NSF could make. But they argue that the Coburn report evaluated their projects superficially and out of context.

One of the projects deemed questionable involves a PR2 robot, made by Silicon Valley firm Willow Garage and by far one of the most capable robotic systems in existence. Berkeley researchers taught the PR2 how to fold towels, a demonstration that captured people's imagination.

But apparently Coburn wasn't impressed. His report notes that the robot cost $1.5 million and complains that it "took nearly 25 minutes to fold each towel." [UPDATE: The report references the wrong NSF grant; this is the correct one, a $1.2 million award. And the Berkeley researchers got the robot for free.]

Here's the "exclusive" unveiling of the report on ABC's "Good Morning America."

Berkeley computer science professor Pieter Abbeel, one of the researchers behind the project, told me that the towel folding experiment was just a small part of a much broader effort aimed at creating robots that can handle the complexities of real environments. Here's what he wrote in a rebuttal:

"[I]n order to expand the use of robots beyond manufacturing the machines must be far more sophisticated in terms of their ability to deal with complexity. That's what our work is all about. Towel folding is just a first, small step towards a new generation of robotic devices that could, for example, significantly increase the independence of elderly and sick people, protect our soldiers during combat, and a host of other applications that would revolutionize our day-to-day lives."

Coburn also discussed the report with Neil Cavuto from Fox News. After seeing footage of the PR2 folding towels, Cavuto says: "I guess many folks would like that. But how's the robot doing? Did it indeed fold clothes?" The senator admits he doesn't know details about the project. "It just caught my eye," he says.

I asked Coburn's office for more information on how they selected the projects they thought shouldn't have been funded. Did researchers or policy experts with relevant scientific backgrounds help Coburn prepare the report? Who are his co-authors?

Coburn "is the author of the report," John Hart, the senator's spokesman, told me in an e-mail. He added that the senator, who is a physician, "does have a scientific background," in addition to a business, accounting, and public policy background. "This is a multi-dimensional discussion."

I also asked whether Coburn and his staff contacted the researchers prior to the publication of the report to ask for more information or offer them a chance to address the criticism.

"Yes," Hart said. "Scientists and researchers who are privileged to receive federal funds should welcome and expect questions about their work." He added: "There are no sacred cows that should avoid examination and, if necessary, dissection."

But all the researchers I contacted told me they never heard from Coburn's staff. They said they were puzzled that the report relies so much on press reports rather than material with more scientific content—an approach they found a bit, well, unscientific. One researcher asked if Coburn would judge whether a patient is sick just by looking at the person's face.

In another project criticized in the report, a UC Davis group is studying how people interact with and control their bicycles. The researchers also want to build a robotic bike.

Mont Hubbard, a professor of mechanical engineering, is working with other faculty and students to develop dynamic models that can accurately describe how people ride bikes. The goal of the project, which received a $300,000 NSF award, is to understand the design parameters that could lead to bikes that are safer and easier to control by different groups of people and for different tasks.

mont hubbard uc davis instrumented bicycle

The researchers are using a bike equipped with sensors [photo above] and also building a robotic bicycle to identify the parameters that their models need to take into account. As it turns out, Hubbard says, we know very little about how a bike's design affects safety, performance, and our ability to control it. In particular, we need to learn more about how the dynamics of the bike and rider affect each other.

"There's plenty to be discovered," Hubbard says. "Just because Senator Coburn knows how to ride a bicycle, it doesn't mean that's the end of it."

He adds that increasing bicycle usage would have "health benefits, transportation benefits, environmental benefits." Surveys show that although Americans don't bike much, many more would if they felt bikes were safer, he said.

The third project criticized in the report was a "robot rodeo," a three-day event that took place at a conference for computer science educators in Dallas, Texas, last year. The organizers, Jennifer Kay, a computer scientist at Rowan University, and Tom Lauwers, a robotics entrepreneur, say the goal of the event was to "introduce robot programming to the nearly 1200 educators attending the conference, and to raise awareness amongst participants of how robots could be used in their classrooms."

They say that despite evidence that robots can be used as educational tools to excite and motivate students, only a tiny fraction of educators have ever programmed a robot or tried them in their classrooms. They told me that the event—which involved months of planning and dozens of volunteers—received only $6,283 from the NSF, a number that the Coburn report doesn't mention. (Just for reference, that's one-fifth of what the Senate Hair Care Revolving Fund spent last year.)

And yes, Kay and Lauwers say, the event was designed to be fun:

"Perhaps the Robot Hoedown and Rodeo was singled out because it has an intentionally eye-catching name, and because on the surface it appears 'fun.' Indeed in his report Senator Coburn states, 'Videos of the event posted to YouTube suggest the effort was a source of enjoyment for observers.' It is precisely this 'fun' which our program aims to associate with Computer Science education, so that our current students will choose to become the future researchers that make the kinds of transformative discoveries that improve our society and our economy."

Coburn acknowledges that NSF grants have supported many scientific breakthroughs, but he insists that the agency could save between $1 billion and $3 billion by eliminating inefficiencies and duplication.

Among other things, he calls for the NSF to defund its social and behavioral sciences division and sharpen its focus on "truly transformative sciences with practical uses outside of academic circles and clear benefits to mankind and the world." (Full disclosure: IEEE Spectrum has collaborated with the Directorate for Engineering of the National Science Foundation to coproduce "Robots for Real," an award-winning special report with clear benefits to mankind and the world.)

But picking "winners" is a challenge even for experienced NSF program managers and the scientists who help the agency review its grant applications.

"In many cases, it can be difficult to identify, in advance, what kinds of research proposals might lead to transformative results," says Dana Topousis, an NSF spokesperson. "For instance, when NSF funded a graduate research fellow in the early 1990s to study digital libraries, we couldn't predict that that graduate student would co-found Google."

So who knows? The next Google may very well be a robotics company founded by a pair of NSF-funded researchers. Then again, there's only one way to find out.

READ ALSO:

Robots Are the Next Revolution
Mon, March 28, 2011

Blog Post: So why isn't anyone acting like it?

PR2 Does The Impossible, Folds Towels
Wed, March 31, 2010

Blog Post: The robot may not be the fastest at folding towels, but the fact that it can do it entirely autonomously is nuts

Top 20 Robot Videos of 2010
Tue, January 11, 2011

Blog Post: Quadrotors performing acrobatics, ultrarealistic humanoids dancing, dexterous robots folding towels, and more

Who Wants a Free Robot?
Tue, May 04, 2010

Blog Post: Willow Garage is giving away PR2 robots to 11 institutions in the U.S., Europe, and Japan

Advertisement

Automaton

IEEE Spectrum's award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
New York, N.Y.
Senior Writer
Evan Ackerman
Berkeley, Calif.
 
Contributor
Jason Falconer
Canada
Contributor
Angelica Lim
Tokyo, Japan
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Advertisement
Load More