Automaton iconAutomaton

PR2 Robot Learning To Bake Cookies, Humanity Surrenders to Yumminess

This is PR2. PR2 plays pool. PR2 brings you beer. And now, or very soon anyway, PR2 will bake you cookies. Warm, gooey, chocolate chip cookies. Seriously, is this not the greatest robot in the world or what?

This video comes from graduate student Mario Bollini, who's a member of Daniela Rus' Distributed Robotics Lab at MIT CSAIL. It's not in the video, but as you can see from the picture, PR2 (or "bakebot" for the purposes of this demo) is also able to cream butter and sugar, and we already know that it can break (or not break) eggs. It does make a bit of a mess, which is the reason for the surgical smock, but a separate group is programming the robot to wipe down the table afterwards. Incidentally, I love how when PR2 finishes adding an ingredient to its mixing bowl, it just drops the container on the floor. Now that's my kind of clean-up.

Bollini hopes to have PR2 making cookies from start to finish within the shockingly short time of a month. Or actually, it'll be just making one single giant cookie at a time, but you know what, I'm totally okay with that. 

[ MIT ]

Japanese Ministry of Self-Defense Spends $1000 on Flying Robot Soccer Ball

One day, the Japanese Ministry of Self-Defense decided to wander into Akihabara, a major electronics shopping center in Tokyo. In what I'm told is a relatively typical Akihabara experience, a year and a half and about a thousand dollars later they came out with this crazy spherical flying robot about the size and shape of a soccer ball.

According to the video, this is the world's first truly spherical flying robot (this may or may not be true). It can buzz around at up to 60 kilometers per hour [about 40 mph] or hover stably in narrow spaces like hallways. But its neatest trick is to land by just smacking into the ground and rolling to a stop to absorb the impact. It's also ideal for operating indoors, since keeping all of the flying and steering components inside the robot lets it happily bounce off walls, doors, windows, light fixtures, and startled people.

The robot relies on one propeller for thrust and eight separate wings for control, and while it doesn't currently carry a payload, it's designed to mount a camera or other sensors. Next up is to instill this thing with some autonomy, and at only $1000 a pop, they're cheap enough that someone who's not with the Japanese Ministry of Self-Defense should venture into Akihabara and bring us all back a sweet little robot soccer ball kit.

[ TV Tokyo ]

Thanks, Paulo, for helping us with the Japanese!

Killer Robots on YouTube, Watch It While It Lasts

Don't tell anyone, but this looks to be a full-length copy of Killer Robots that's made an appearance on YouTube. We were off giving a talk (and watching other events) and weren't able to brave the mobs of delirious robot fans around the RoboGames heavyweight combat arena, but the Science Channel brought in a squad of cameramen led by Grant Imahara (from Mythbusters) to tape the whole thing.

If you're in too much of a hurry to watch it all, you should probably see a doctor and/or get your priorities straight, but the last two matches (starting at about 36:00) are some the best that I've seen in the last three years of RoboGames and Combots. Now hurry up and watch it already, 'cause there's no telling how long it's going to last online and who knows when it'll be on TV again.

[ Killer Robots ]

[ RoboGames ]

Robots Make Shuffleboard a Slightly More Interesting Sport to Watch

I'm not entirely sure what shuffleboard is. So really, I'm not at all qualified to compare this robotic version of the sport to the real thing. But it's nifty that a bunch of students at Oregon State University got a chance to build these robots as part of their coursework, proving that robots can be for learning and fun and evil, all at the same time! Not that I'm insinuating anything about shuffleboard, but I digress. Here's video of a match:

Not bad for eight weeks and 200 hours of work, right? Now someone just needs to invent robotic curling. There's an action-packed sport that's somehow different from and significantly better than shuffleboard. Oh wait, apparently someone did:

I know nothing about this, besides that I found it on YouTube after searching for "robotic curling," but it does sort of look like it might possibly be autonomous, which would be pretty cool. There's video of another match here. If you know anything about it (it's something to do with an "SMU championship"), speak up in the comments!

Photo: Jesse Skoubo/Corvallis Gazette-Times

Via [ Corvallis Gazette-Times ]

Running Hexapod Gets Fancy New Tunable Legs

You may not realize it, but you've got a lot of springiness going on in your legs. You may also not realize that you change that springiness depending on whether you're running or walking, what surface you're on, and whether or not you're carrying stuff. Our bodies (and most animals) are able to dynamically adapt our legs and gaits to make us more efficient under changing conditions. Dynamic adaptation is something that robots are notoriously bad at, but EduBot, a son or cousin or something of the venerable RHex, has been experiment with six new "tunable" legs that allow it to adjust its gait on the fly.

EduBot's legs are made out of carbon fiber, and by changing the location of a slider along the leg, the overall stiffness of each leg can be adjusted independently. Of course, once the stiffness of the legs changes, EduBot has to adapt its gait to match, which it does all by itself by analyzing its own speed, efficiency, and stability. A bunch of different experiments were performed to help the robot learn what leg stiffnesses and gaits produced the most desirable movement patterns on different surfaces and while carrying different loads, and generally the robot was able to figure out what worked best within 70 tries worth of experimentally fiddling with its own programming. I say "generally," because sometimes it took longer, and because watching the robot failing to use the correct gait is pretty funny:

Overall, these experiments have shown that EduBot runs fastest and most efficiently with stiffer legs, but that things can change on softer surfaces (say, grass, or a shaggy carpet) or with payloads, indicating that adaptive and dynamic leg compliance really would be a useful thing to have on a robot, despite the added complexity. Next up will be teaching the robot to adjust its legs on the fly, and it'll be interesting to see how this technology might benefit other robots (or even humans) with similar limbs.

EduBot's new legs were presented in an ICRA paper entitled "Experimental Investigations into the Role of Passive Variable Compliant Legs for Dynamic Robotic Locomotion," by Kevin C. Galloway, Jonathan E. Clark, Mark Yim, and Daniel E. Koditschek, from Harvard University, Florida A&M, and the University of Pennsylvania respectively.

[ EduBot ]

Brilliant Little Jumping Robot Only Needs One Motor

Jumping offers a way for very small robots to get over very large obstacles using a minimal amount of energy. It's tricky, though, because while the first jump might be pretty easy, subsequent jumps depend on the ability of the robot to right itself, aim, and go again. That's essentially three separate subsystems, but since you're only ever using one at a time, the risk is that your robot ends up being three times as bulky as is strictly necessary. And in small robots, efficiency is everything.

EPFL's locust-inspired jumping robot solves one of these problems with a weighted roll cage that helps the bot passively return to an upright position whenever it lands. A second motor then allows the robot to rotate within the cage to change its jumping direction. This works quite well, but it adds bulk plus another motor to the whole system.

Jianguo Zhao and a team from Michigan State University have created a jumping robot that somehow manages to do everything that it needs to do with just one single motor. It can change its orientation, right itself, and then jump (really freakin' high) with one motor and some clever mechanical engineering. Check it out:

The actual jumping mechanism was directly inspired by the legs of a frog, but it's really the rest of the robot that's so cool. Everything is driven by one tiny pager motor, and here's how it works:

  • To jump, the pager motor engages a gear which pulls the robot's body down towards its legs, slowly charging four torsional springs. The gearing and springs help keep the power requirements low without sacrificing jumping energy. When the springs are fully charged up, the gear trips a little lever, and the legs are released. Boing!

  • After re-entry, the robot inevitably finds itself lying prone. By driving the pager motor backwards, the same gear that charges the springs instead spins against the ground without engaging anything, allowing the body of the robot to rotate to a new position.

  • To get up, as the robot's body is pulled down towards its legs, little arms deploy outwards, driven by that same downward motion. These arms push the robot up into a standing position, and keep it there until liftoff.

I really love how simple and clever this all is. It's efficient, too: the robot is 8 centimeters tall and only weighs 20 grams, including the motor and a 50 mAh battery, but it can make approximately 285 jumps without needing to be recharged.

The designers think that it should be possible to make the robot jump even higher and farther, and of course at some point they're going to want to stick some sensors on there or something to move it from just being awesome to being awesome and useful at the same time.

This robot was presented at ICRA in a paper entitled "Development of a Controllable and Continuous Jumping Robot" by Jianguo Zhao, Ning Xi, Bingtuan Gao, Matt W. Mutka, and Li Xiao, all from Michigan State University.

[ MSU ]

Robotic Construction Machine Causes Explosion at Fukushima

fukushima remote control construction equipment
A teleoperated robotic excavator similar to the one above caused an oxygen cylinder to explode.

Editor's Note: John Boyd is an IEEE Spectrum contributor reporting from Kawasaki, Japan. This is part of IEEE Spectrum's ongoing coverage of Japan's earthquake and nuclear emergency.

A teleoperated robotic construction machine accidentally hit an oxygen cylinder at the Fukushima Dai-ichi nuclear plant this Tuesday, causing the cylinder to explode. The unmanned machine, a grapple-equipped excavator fitted with cameras to guide a remote operator, was clearing radioactive debris from the south side of the No. 4 reactor building when a loud explosion was heard around 2:30 p.m.

Despite the loudness of the blast, a Tokyo Electric Power Co. (TEPCO) official told IEEE Spectrum that, “It turned out to be nothing. There was no damage and there was nothing to repair. And the machine is being used again.” He added that the cylinder contained "compressed oxygen, so the noise was loud."

The machine, which the TEPCO official insists is "not a robot," was removing debris flung from the No. 3 reactor building after a hydrogen explosion occurred there on March 14, following the meltdown of the reactor’s fuel rods. Workers are trying to clear the plant of radioactive debris from at least two hydrogen explosions in order to facilitate the set-up of reactor cooling systems and also the transfer of pooled radioactive water from the reactor and turbine buildings to a central radioactive waste disposal facility and other temporary storage.

Because much of the rubble is highly radioactive, TEPCO is employing machines like the remote controlled excavator to remove the contaminated debris. But as this explosion shows, that doesn't mean there are no risks. In fact, an operator controlling a teleoperated robotic machine by relying on cameras rigged to the vehicle may have impaired visual access, making it difficult to spot dangerous objects like oxygen cylinders amid the piles of rubble.

Dr. Robin Murphy, director of the Center for Robot-Assisted Search and Rescue (CRASAR) at Texas A&M University, in College Station, and a world experts on rescue robotics, says that she sees "these kinds of accidents or operator errors all the time." The problem, she explains, is that roboticists are still trying to improve remote presence technologies to allow operators to effectively see and act remotely through a device such as a robot or sensor.

"Many manufacturers think that a certain camera position or multiple cameras will solve the problem of what is sometimes called situation awareness or sensemaking, but this neglects the whole host of subtle, but real, cognitive barriers that arise from working remotely and having perception mediated," she says. Remote operating a robotic system in a constrained environment -- say, an office or in space or underwater -- might actually be easier compared to a disaster-stricken area, which is not well understood and not engineered to make it easy for the robot. "Disasters continue to offer surprises and difficult to model situations."

Image: TEPCO

READ ALSO:

Robotic Drone Captures Dramatic Footage of Fukushima Destruction
Wed, April 20, 2011

Blog Post: Video and photos taken by a Honeywell T-Hawk micro air vehicle show damage with unprecedented detail

Videos of PackBot Robots Inside Fukushima Reactors Released
Wed, April 20, 2011

Blog Post: Tokyo Electric Power Co. has released multiple videos showing two iRobot PackBots navigating inside the dark, highly radioactive buildings

Robots Enter Fukushima Reactors, Detect High Radiation
Mon, April 18, 2011

Blog Post: Two iRobot PackBot robots have entered Unit 1 and Unit 3 and performed radioactivity measurements

Can Japan Send In Robots To Fix Troubled Nuclear Reactors?
Tue, March 22, 2011

Blog Post: It's too dangerous for humans to enter the Fukushima Dai-1 nuclear plant. Why not send in robots?

German Robot Plays Pool, Throws Down Robot Pool Gauntlet

Well, it's inevitable now. RoboGames obviously needs to add a new event: robot pool. Willow Garage got their PR2 sinking balls as part of a week-long hackathon, and at ICRA, the Germans answered back with a similarly-sized dual arm robot able to pocket five balls in a row:

Thomas Nierhoff, a masters student at Technische Universität München (TUM), used a human-sized mobile robot with dual 7-DOF arms that's able to manipulate a pool cue similarly to how a human does. A camera above the table tracked the positions of the balls and helped the robot plan its shots, separating each into various difficulty thresholds to help the bot decide which it should take. It managed to nail most of the easier shots about 80% of the time, which isn't too shabby, and seems like it would probably make it competitive with the PR2.

It's a shame, then, that Germany is such a long way from California. But wait! It just so happens that there are several PR2s in Germany. And it also just so happens that one of them is right there at TUM, albeit in a different lab. Personally, I don't see how it would be possible not to set up a friendly little game, and if Rosie wants to get involved too, I'm all for that. Place your bets in the comments!

This robot was presented at ICRA in a paper entitled "Playing Pool with a Dual-Armed Robot" by Thomas Nierhoff, Omiros Kourakos, and Sandra Hirche, all with the Institute of Automatic Control Engineering at TUM.

[ TUM ]

Microdrones Film Confused African Wildlife

microdrones md4-1000 film african wildlife

It's a well known fact that animals from the Arctic to Africa have absolutely no idea what to think about robots. Taking full advantage of this phenomenon, Microdrones let one of their MD4-1000 quadrotors loose on safari in Kenya, and it set about capturing video like you've probably never seen before.

While I'm not one to spout propaganda about how robots are revolutionizing every aspect of our lives (okay, I totally am), this is an entirely new way of filming animals that's just beginning to be explored through trial and error. We're used to watching animals from afar through gigantic zoom lenses, but small flying robots offer the opportunity to get in the middle of things without causing too much of a ruckus, and this is just one of the first tentative stabs at a whole new world of footage that would do David Attenborough proud. And it's not just for animals, either: imagine flying one of these things into an erupting volcano.

It looks like these clips are part of a show that Microdrones is putting together for TBS Television Japan, but we'll make sure and let you know if it ever shows up online.

[ Microdrones ]

DARPA Concludes Nano Air Vehicle Program, We Wonder What's Next

The original concept, on left, and the final robot, on right

We've written a fair number of articles starting with the phrase "DARPA wants" followed by something that's nearly always entirely improbable and often borderline nutty. It's rare that DARPA actually gets exactly what it wants, but with their Nano Air Vehicle program, that seems to have happened.

As the above video shows, it was definitely not an easy process to make a life sized, fully controllable surveillance robot that's more or less indistinguishable for a hummingbird, but AeroVironment managed to pull it off. Of the technical goals and milestones that DARPA set out for the robot, it managed to meet all and exceed many:

  • Demonstrate precision hover flight within a virtual two-meter diameter sphere for one minute.

  • Demonstrate hover stability in a wind gust flight which required the aircraft to hover and tolerate a two-meter per second (five miles per hour) wind gust from the side, without drifting downwind more than one meter.

  • Demonstrate a continuous hover endurance of eight minutes with no external power source.

  • Fly and demonstrate controlled, transition flight from hover to 11 miles per hour fast forward flight and back to hover flight.

  • Demonstrate flying from outdoors to indoors, and back outdoors through a normal-size doorway.

  • Demonstrate flying indoors 'heads-down' where the pilot operates the aircraft only looking at the live video image stream from the aircraft, without looking at or hearing the aircraft directly.

  • Fly the aircraft in hover and fast forward flight with bird-shaped body and bird-shaped wings.

AeroVironment says that it would take a decade to make this robot ready for deployment, but DARPA doesn't just hand out piles of cash to make cool stuff for no reason. There's a future here, whether or not we hear about it immediately, so just make sure to give hummingbirds a second look from now on.

[ Nano Air Vehicle Program and AeroVironment ]

Advertisement

Automaton

IEEE Spectrum's award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
New York, N.Y.
Senior Writer
Evan Ackerman
Berkeley, Calif.
 
Contributor
Jason Falconer
Canada
Contributor
Angelica Lim
Tokyo, Japan
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Advertisement
Load More