Automaton iconAutomaton

Pneumatic Generator Could Make Soft Robots Useful

The adaptability and inherent safety offered by soft robots is pretty great, and we’ve seen lots of examples of all the crazy things that you can do when you don’t have to worry about giving your robot bones. Getting these boneless robots to move is tricky, but turning water into gas and then back into water again may offer a compact, efficient, and clever solution.

Read More

Robots Learning Judo Techniques to Fall Down Without Exploding

The best and worst part of the DARPA Robotics Challenge Finals was watching all of those huge expensive humanoids topple over in a series of epic faceplants. Faceplants are called faceplants because you’re planting your face into the ground as a means of breaking your fall, which usually also breaks your face, among other things. This tends to happen when you’re unprepared for falling, which with most robots, is 100 percent of the time. Now researchers at Georgia Tech want to teach humanoid robots to fall more safely with techniques adapted from judo, which might protect them enough to actually be able to get up again.

Read More

Throwable Robot Ball Unfolds Legs to Walk

Anyone who has much in the way of experience with robots is painfully aware of their fragility. Robots like Flyability’s Gimball deal with this through the creative use of roll cages, which have a useful side effect of allowing the robot to dynamically navigate through direct surface contact. Roll cages can protect ground robots too, although it’s a bit more problematic because using a full roll cage makes it difficult for the robot to do anything but roll. At IROS, Japanese researchers presented a design for a robot that can be tossed, roll along the ground, and then pop out four legs when it needs to scramble around.

Read More

Video Friday: Robot Phone, Cardboard Karts, and The Long Road to Everywhere

We’ve made it back from IROS 2015 in Germany mostly in once piece, and we still have all kinds of other stuff to bring you from the conference as soon as we recover from a potentially lethal combination of jet lag, curry sausages, weird cheese, and pretzels that are full of butter for no reason. So now that IROS is over, you know what that means: time to get ready for ICRA 2016 in Stockholm!

But we’re not there yet, and we have some catching up to do on robot videos, so here’s a couple dozen from the last two weeks to help you make it to the end of your Friday.

Read More

Watch Flyability's Flashy Drones Dance Around a Forest at Night

Seems like everybody wants to sell you a drone these days. And since not everyone can sell the same drone, each one is slightly (usually incrementally) different, while simultaneously each one promises to be the best drone ever. It’s exhausting, really. Being terrible pilots, we’re mostly in favor of drones that we can fly without crashing them, and no matter how fancy your autopilot purports to be, the best drone for flying without crashing has to be Flyability’s Gimball, which is basically indestructible. The company, based in Lausanne, Switzerland, just posted a video of two Gimball drones tricked out with LEDs bouncing around a forest at night: it’s beautiful, and not something that any other drone would be able to do.

Read More

Jumping Spider Robot Uses Tether for Controlled Jumps

Much of the recent research into jumping robots has used biology as an inspiration. UC Berkeley’s Tailbot, for example, uses a dinosaur-inspired actuated tail to help control its orientation while in mid-air. Other jumping species aren’t quite so lucky as to be equipped with tails, and have to find other ways of not tumbling helplessly mid-jump and face planting on landing.

One of the most prolific family of jumping animals is the jumping spider: there are something like 5,000 species around the world, and rather than building webs and just sitting around until something blunders into them, jumping spiders actively hunt their prey by using their excellent vision to spot lunch, chase it down, and pounce on it. Some jumping spiders, like the Phidippus audax pictured above, even steal lunch from other spiders (a behavior known as kleptoparasitism).

Jumping spiders might not build webs, but they can still produce silk, and they don’t like leaping into the void without a safety rope any more than you do. Before they jump, they tether themselves, and then release more silk as they fly, so that if they miss their target they can catch themselves and then climb back up to where they launched from. A few years ago, biologists took a closer look at the jumping spiders’ tether system, and realized that they used it for control as well as safety: by selectively applying tension to their safety tether, the spiders can control their pitch and make sure that they land right side up.

This combination of safety and control seems like a pretty good idea, right? So let’s teach robots to do it, too.

Read More

Video Friday: Walking on Ceilings, Cat-Inspired Legs, and Robot Grasps Tofu

The 2015 IEEE International Conference on Intelligent Robots and Systems (IROS) ends today in Hamburg, Germany, and we’ve heard that some 2,500 people attended the talks and visited the exhibit hall. That’s yooooge, as one U.S. presidential candidate would put it.

We’ve started to post some of the most interesting stuff, but there will be lots more in-depth IROS posts for you over the next several weeks. Right now we’re preparing for ROSCon, which starts tomorrow, so for Video Friday today we selected some of our favorite videos presented at the conference. Enjoy!

Read More

Honda Using Experimental New ASIMO for Disaster Response Research

During the Fukushima crisis in Japan, the lack of Japanese robots that were available to help out was notable. There was some question as to why Honda didn’t just send ASIMO (arguably one of the most sophisticated and capable humanoid robots in existence) to help out. The simple answer is that ASIMO wouldn’t be able to handle that kind (or any kind) of extreme environment. The robot was never intended to be a disaster mitigation robot; it was designed to work in offices, specifically the kind of offices that have not experienced an earthquake, explosion, alien invasion, sharknado, or other messy event. Honda is clearly aware of ASIMO’s limitations in tackling these kinds of situations, and that’s probably why (as we reported two years ago) the company has been developing a new version of ASIMO that is specifically designed for disasters.

At the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) this week, Honda engineers presented a pair of papers on research they’re doing with disaster-response humanoid robots. The researchers report that they’ve been focused on complex tasks such as gait transitions and ladder climbing. It was nice seeing that their ASIMO-based experimental humanoid is already doing some very impressive things.

Read More

Robot With Bimetal Feet Can Walk in a Frying Pan Forever

A bimetal consists of two different kinds of metal stuck together. Bimetals are different than alloys, where the two metals are blended; in a bimetal, the two metals are just layered on top of each other. The reason to do this is to take advantage of the different characteristics of different metals when they’re heated: they expand at different rates, causing your piece of bimetal to deform until it cools off again. Essentially, a bimetal is a way to convert heat directly into mechanical energy, and researchers at the University of Tokyo have come up with a way to leverage this to get a robot to walk. The robot has no sensors and no actuators, and as long as it’s got a hot surface to walk on, it can keep going pretty much forever.

Read More

Harvard's Robot Bee Is Now Also a Submarine

For the last several years, Harvard has been developing a robot bee. They’ve done some impressive work: their sub-paper-clip-sized, 100-milligram flapping-wing micro aerial vehicle is fully controllable down to a stable autonomous hover. It’s still tethered for power, and there’s no onboard autonomous control, but the robot flaps its wings and flies like an insect, which is awesome.

Tiny robotic bugs have lots of potential for search and rescue, surveillance, and exploration, but what’s been all the rage recently is adaptive multi-modal robotics: robots that can creatively handle a combination of terrains, making them much more versatile. With some exceptions, robots are usually pretty bad at this, and with some exceptions, humans and animals are too. There are ground robots that can handle water, and a few flying robots that aren’t totally helpless on the ground, but so far, we haven’t seen much in the way of flying robots that are good swimmers. 

Yesterday at IROS, Harvard researchers presented a paper describing how they managed to get their robotic bee to swim, which I’m pretty sure is not a thing that even real bees are known for doing. With no hardware modifications at all, Harvard’s RoboBee can fly through the air, crash land in the water, and turn into a little submarine. You know what that means: nowhere is safe from robot bees.

Read More


IEEE Spectrum's award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, drones, automation, artificial intelligence, and more.
Contact us:

Erico Guizzo
Senior Writer
Evan Ackerman
Jason Falconer
Angelica Lim

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Load More