Automaton iconAutomaton

Stanford's Ocean One is a hybrid between a humanoid robot and an underwater remotely operated vehicle.

How Stanford Built a Humanoid Submarine Robot to Explore a 17th-Century Shipwreck

Back in April, Stanford University professor Oussama Khatib led a team of researchers on an underwater archaeological expedition30 kilometers off the southern coast of France, to La Lune, King Louis XIV’s sunken 17th-century flagship. Rather than dive to the site of the wreck 100 meters below the surface, which is a very bad idea for almost everyone, Khatib’s team brought along a custom-made humanoid submarine robot called Ocean One.

Read More
Feathered morphing drone

Artificial Feathers Let Drones Morph Their Wings Like Birds

Birds have been developing winged flight technology ever since they stole it from the dinosaurs back in 160 million years ago. Early on, top bird aeronautical engineers realized that wings have a fundamental problem: They give you both lift (which you want) and drag (which you don’t). Lift is important for take-offs and landings and maneuverability, but once you get off the ground and are going fast enough in a straight line, mostly wings just keep you from going even faster.

The solution that birds came up with was a clever one: Wings that can change their shape. Thanks to overlapping feathers and a joint at the end of the wing, most birds can fold their primary flight feathers back, which significantly reduces the surface area of their wings. This allows them to switch back and forth from long, maneuverable wings that are good at turning and soaring to short, stubby wings that are optimized for speed.

Humans have been a bit slow at catching up with birds on this—the best we’ve been able to do are some mechanically complicated and presumably very expensive wings that ponderously swing back and forth a little bit, but isn’t it about time we catch up to this technology that’s over a hundred million years old? At the École Polytechnique Fédérale de Lausanne (EPFL), in Switzerland, Dario Floreano’s lab certainly thinks so, and they’ve been flight testing a small drone with feathered, folding wings that can maneuver like real birds do.

Read More
An unmanned rigid-hull inflatable boat operates autonomously during an Office of Naval Research (ONR)-sponsored demonstration of swarmboat technology held at Joint Expeditionary Base Little Creek-Fort Story.

U.S. Navy's Drone Boat Swarm Practices Harbor Defense

Drone boats belonging to the U.S. Navy have begun learning to work together like a swarm with a shared hive mind. Two years ago, they would have individually reacted to possible threats by all swarming over like a chaotic group of kids learning to play soccer for the first time. Now the drone boats have showed that they can cooperate intelligently as a team to defend a harbor area against intruders.

Read More
DFKI Mars rover test in Utah

Video Friday: 20-Meter Long Robot Arm, Amazon Drone Delivery, and Mars Rovers in Utah

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here’s what we have so far (send us your events!):

WAFR 2016 – December 18-20, 2016 – San Francisco, Calif., USA

Let us know if you have suggestions for next week, and enjoy today’s videos.


Read More
Russia's Uran-9 is an unmanned tank remotely controlled by human operators.

Why the United Nations Must Move Forward With a Killer Robots Ban

This is a guest post. The views expressed here are solely those of the authors and do not represent positions of IEEE Spectrum or the IEEE.

Killer robots are on the agenda of a major United Nations meeting in Geneva this week.

As part of a U.N. disarmament conference, participating countries are deciding on Friday whether or not to start formal discussions on a ban of lethal autonomous weapons following on from three years of informal discussions.

Read More
Personal Aerial Vehicles

No Jerks Allowed on Personal Drones

Drones can do some incredible acrobatics. Being robots, they don’t care all that much about flying sideways or upside-down or making sudden acceleration changes or even doing things like this. If you were somehow a passenger on that drone and weren’t a trained fighter pilot (and maybe even if you were), you’d pass out and very likely die. Drones don’t do a lot of passenger carrying at the moment, which is probably for the best, but we’ve seen enough crazy ideas to suggest that using autonomous drones instead of autonomous cars to transport humans is probably going to be a reality within a handful of decades.*

At the École Polytechnique Fédérale de Lausanne (EPFL), in Switzerland, a group of researchers led by Dario Floreano is already worrying about how we’re going to handle personal drone flights, especially in situations where a lot of drones are trying to go in a lot of different directions at the same time. They’ve come up with an algorithm that allows drones to avoid collisions with each other while also not turning humans into mounds of quivering goo.

Read More
Buildings printed by robots

Video Friday: Cybathlon Highlights, Design Your Own Drone, and Buildings Printed by Robots

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here’s what we have so far (send us your events!):

RiTA 2016 – December 11-14, 2016 – Beijing, China
SIMPAR 2016 – December 13-16, 2016 – San Francisco, Calif., USA
WAFR 2016 – December 18-20, 2016 – San Francisco, Calif., USA

Let us know if you have suggestions for next week, and enjoy today’s videos.


Read More
Astro Teller, head of X, Alphabet's innovation lab, leads a group of engineers, inventors, and designers devoted to futuristic moonshot projects.

Astro Teller, Captain of Moonshots at X, on the Future of AI, Robots, and Coffeemakers

Astro Teller has an unusual way of starting a new project: He tries to kill it.

Teller is the head of X, formerly called Google X, the advanced technology lab of Alphabet. At X’s headquarters not far from the Googleplex in Mountain View, Calif., Teller leads a group of engineers, inventors, and designers devoted to futuristic “moonshot” projects like self-driving cars, delivery drones, and Internet-beaming balloons.

To turn their wild ideas into reality, Teller and his team have developed a unique approach. It starts with trying to prove that whatever it is that you’re trying to do can’t be done—in other words, trying to kill your own idea. As Teller explains, “Instead of saying, ‘What’s most fun to do about this or what’s easiest to do first?’ we say, ‘What is the most likely reason this project won’t make it?’

The ideas that survive get additional rounds of scrutiny, and only a tiny fraction eventually becomes official projects; the proposals that are found to have an Achilles’ heel are discarded, and Xers quickly move on to their next idea. It’s all part of Teller’s plan to systematize innovation” and turn X into an assembly line of moonshots.

The moonshots that X has pursued since its founding six years ago are a varied bunch. While some were quite successful, such as Google Brain, which led to AI technologies now used in a number of Google products, others faced backlash, as was the case, most notably, with Google Glass. With Teller at the helm—his official title is “Captain of Moonshots”—X sees itself playing a key role in shaping the future of its parent company.

“If Alphabet wants to continue to grow, it needs to have one or more mechanisms for creating new problems to have,” Teller says, adding, “That’s X’s mission . . . our product is producing new Alphabet entities.”

To learn more about how they approach things at X, and get an update on its current projects, IEEE Spectrum senior editor Erico Guizzo spoke with Teller at Google’s office in New York City. The following has been edited and condensed for clarity.

Read More
MIT's ChainFORM modular robot

MIT's Modular Robotic Chain Is Whatever You Want It to Be

As sensors, computers, actuators, and batteries decrease in size and increase in efficiency, it becomes possible to make robots much smaller without sacrificing a whole lot of capability. There’s a lower limit on usefulness, however, if you’re making a robot that needs to interact with humans or human-scale objects. You can continue to leverage shrinking components if you make robots that are modular: in other words, big robots that are made up of lots of little robots.

In some ways, it’s more complicated to do this, because if one robot is complicated, n robots tend to be complicatedn. If you can get all of the communication and coordination figured out, though, a modular system offers tons of advantages: robots that come in any size you want, any configuration you want, and that are exceptionally easy to repair and reconfigure on the fly.

MIT’s ChainFORM is an interesting take on this idea: it’s an evolution of last year’s LineFORM multifunctional snake robot that introduces modularity to the system, letting you tear of a strip of exactly how much robot you need, and then reconfigure it to do all kinds of things.

Read More
Salto jumping robot

UC Berkeley's Salto Is the Most Agile Jumping Robot Ever

Ron Fearing's Biomimetic Millisystems Lab at UC Berkeley is famous for its stable of bite-sized bio-inspired robots, and Duncan Haldane is responsible for a whole bunch of them. He's worked on running robots, robots with wings, robots with tails, and even robots with hairs, in case that's your thing. What Haldane and the other members of the lab are especially good at is looking to some of the most talented and capable animals for inspiration in their robotic designs.

One of most talented and capable (and cutest) jumping animals is a fluffy little thing called a galago, or bushbaby. They live in Africa, weigh just a few kilos, and can leap tall (nearly two meter) bushes in a single bound. Part of the secret to this impressive jumping ability, which biologists only figured out a little over a decade ago, is that galagos use the structure of their legs to amplify the power of their muscles and tendons. In a paper just published in the (brand new!) journal Science Robotics, Haldane (along with M. M. Plecnik, J. K. Yim, and R. S. Fearing) demonstrate the jumping capability of a little 100g robot called Salto, which leverages the galago's tricks into what has to be the most agile and impressive legged* jumping skill we've ever seen.

Read More
Advertisement

Automaton

IEEE Spectrum's award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, drones, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
 
Senior Writer
Evan Ackerman
 
 
Contributor
Jason Falconer
Contributor
Angelica Lim
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Load More