NASA's Robotic Lunar Lander Gets 2 Meters Closer to The Moon

Infrared view of NASA's robotic lunar lander prototype

NASA has been working on a prototype robotic lander designed to explore the moon, asteroids, comets, and other airless bodies that don't demand complex and scary aeroshells and parachutes for safe landings. The lander, which seems to have no sexier name than "robotic lander testbed," is about the size of a golf cart and is powered by hydrogen peroxide catalyst engines.

These engines run 90 percent hydrogen peroxide, which is just like the stuff that you can buy at the store, except way more concentrated, making this lander one of the more eco-friendly spaceships out there. This overview video from a few months ago takes you through the prototype:

Just this past Monday, the training wheels officially came off, and the robotic lander took itself to an autonomous two meter hover for 27 seconds. The video below shows the entire flight (along with some touching audio of the jubilant crew at the end) from several angles along with some sweet infrared footage:

Part of the deal with the robotic lander testbed is to try to develop a versatile platform that can be used to field missions that are relatively inexpensive and efficient, and from the sound of things, they're off to a good start. In the future, we may see robotic landers like this landing on the moon to check for volatiles (like water), listening for moonquakes, or even hitching rides on near-Earth asteroids.

[ NASA ] via [ Wired ]

Advertisement

Automaton

IEEE Spectrum's award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
New York, N.Y.
Senior Writer
Evan Ackerman
Berkeley, Calif.
 
Contributor
Jason Falconer
Canada
Contributor
Angelica Lim
Tokyo, Japan
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Advertisement